Происхождение рака. Новое в науке о здоровье и жизни человека. Ольга Елисеева. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ольга Елисеева
Издательство:
Серия: Библиотека доктора Елисеевой
Жанр произведения: Медицина
Год издания: 2015
isbn: 978-5-9573-2949-7
Скачать книгу
солнечное излучение от однотипных молекул и за счет резонанса усиливает электромагнитную волну.

      Но каким образом возбужденная молекула гидроксила может быть встроена в материю плазмы крови? Есть несколько вариантов такого ее «обустройства»: например, она может входить в молекулу в виде функциональной группы; или в качестве иона возникать в материи плазмы при диссоциации молекул воды; или просто быть составной частью молекулы и пр.

      О молекулярной основе рака, или молекуле, способной создать код раковой болезни, мы можем пока говорить только гипотетически. Молекулярной основой рака может быть назван нанокомплекс, состоящий из четырех молекул арахидоновой кислоты – жирной кислоты с короткой молекулярной цепочкой. Известно, что жирными кислотами были насыщены первичные воды Мирового океана, в которых со временем зародилась жизнь. Ученые предполагают, что именно короткоцепочечные жирные кислоты могли стать основой для первородной жизни. Мы же рассматриваем нанокомплекс как первооснову будущей раковой клетки, или праматерию ДНК. Клетки, которая синтезируется непосредственно в материи плазмы крови. Арахидоновая кислота, как известно, входит в состав липидов клеточных мембран. Рассмотрим, как синтезируется праматерия ДНК. Что она включает в себя, как образуется?

      О свойствах арахидоновой кислоты известно достаточно много. Но для того, чтобы стать кодом раковой болезни, необходимо одновременное объединение сразу четырех молекул арахидоновой кислоты, которые создают при этом голографический «ажур», показанный на микрофотографии 19. Данный «ажур» был обнаружен в крови больной раком женщины средних лет при помощи обычного светового микроскопа. По сравнению с эритроцитом, наблюдаемым на переднем плане, он просто огромен. При фиксации наличия в крови подобных объектов у врачей появляется возможность ранней диагностики раковых заболеваний. Однако подобная методика сопряжена с необходимостью частого просмотра анализов крови, так как вследствие выбросов из тонкого кишечника (в соответствии с суточными ритмами) голограмма может быть уничтожена. Но отчаиваться не стоит, поскольку микрофлора и фауна крови в этом случае будет уже настолько развитой, что «угомониться» сможет только спустя три недели после прохождения пика своей активной фазы. Затем все повторится, и исследователь получит шанс продолжить изучать болезнь века.

      Микрофотография 19. Нанокомплекс рака, состоит из четырех однотипных молекул. Согласно сложной картине интерференции, четыре абсолютно идентичных луча собирают красивый «ажур». Он имеет более крупные размеры по сравнению с эритроцитом, показанным на переднем плане, и хорошо наблюдается даже в обычный световой микроскоп. На одном мазке крови могут быть выделены сразу несколько подобных нанокомплексов, и все они в дальнейшем способны послужить основой для развития раковой болезни

      Собираются нанокомплексы из четырех однотипных молекул. Размеры нанокомплексов составляют