только релятивисты (физики), но и некоторые геометры и математики. Приведу пример. Релятивисты, разработчики общей теории относительности, часто говорят о том, что пространство искривлено. Но, ни геометр, ни математик не только не возражают против этого утверждения, а даже наоборот, помогают релятивистам оформлять идею искривления пространства в математической форме. Как это понимать? И что на деле означает идея искривления пространства? Эта идея на деле означает, что теперь единица измерения длины становится не абсолютной, а относительной! В самом деле, теперь единица не является отрезком евклидовой прямой, а является кусочком кривой (например, частью дуги окружности). И кривизна такой «единицы» не определена. Эта кривизна может быть какой угодно. Ни в природе, ни в науке нет критериев, которые бы давали ответ на вопрос: «Почему кривизна единицы должна равняться, например, 0,1, а не 0,4»? Но это ещё не все! Чтобы измерить кривизну единицы, потребуется измерить её радиус кривизны. А радиус кривизны есть отрезок евклидовой прямой. И для его измерения потребуется евклидова, «прямая» единица. Таким образом, введение «кривой» единицы приведет к порочному кругу в процедуре измерений. Измерения с помощью такой, «кривой» единицы потеряют всякий смысл. Кроме того у математика числа станут «кривыми»! В самом деле. Теперь каждому числу у математика будет соответствовать не отрезок евклидовой прямой, а цепочка кусочков некоторой кривой. Мы сможем восстановить возможность проводить измерения, восстановив абсолютность единицы длины, для чего нужно вернуться в евклидово (неискривленное) пространство.
Абсолютность эталона длины и угла гарантируется только в евклидовом (не искривленном) пространстве