Ни одна даже самая изящная математическая теория так не строится, выбирая в качестве своего объекта формализованную абстракцию. Примеры:
1) Сравнив точки на прямой линии и рациональные числа некоего упорядоченного множества, Дедекинд пришел к выводу, что в последнем есть пробелы, то есть не существует рациональных чисел, которые соответствуют некоторым точкам на прямой. Иными словами, линия более «заполнена», чем множество. Из чего выводится понятие непрерывности: множество называется непрерывным, если, будучи рассеченным на правый и левый класс, либо в левом классе существует наибольший элемент, а в правом нет наименьшего, либо в правом классе существует наименьший элемент, а в левом нет наибольшего. Дедекиндово сечение заполняет пробелы в числовом множестве, превращая его в непрерывное. Этим определением Дедекинд сделал абстрактное обобщение интуиции.
2) То же, но в еще более радикальной форме, проделал Кантор, когда своей теорией множеств обобщил свойства натуральных чисел. Радикализм Кантора заключался в том, что он предложил объекты, которые лежали за пределами человеческой интуиции.
3) Потоки Риччи, которыми описываются изменения свойств поверхности и которые легли в основу доказательства гипотезы Пуанкаре. В неформальных терминах потоки Риччи можно описать как процесс растяжки римановой метрики при негативной кривизне и ее сокращения при позитивной кривизне. Не говоря о технических сложностях, потоки Риччи, которые задаются векторами (х), при том, что направление (г) – или время – не играет роли, определяют эволюцию римановой поверхности. Чем больше кривизна, тем сильнее натяжка или сокращение. Это означает, что в потоки Риччи можно играть сколь угодно «долго» и на любой дистанции, пока не будет достигнута сингулярность (особенно при позитивной кривизне), когда многообразие теряет свои топологические свойства. Банальный случай многообразия с «шеей» (наир., бокал), когда «шея» под потоками Риччи сокращается в точку. Однако даже такое очень сложное математическое действие-объект, где результат зависит от целого ряда условий, если не сказать от воли игрока, – радикально иное, чем философское.
Потоки Риччи и ноэтические потоки (у Гуссерля) отличаются друг от друга тем, что первые – это инструмент для решения задачи, вторые – сама возможность поставить задачу. «Поставить задачу» означает помыслить нечто как задачу, но