Подобно тому как г-н Дюринг воображает, что из математических аксиом, которые с чисто логической точки зрения не допускают обоснования, да и не нуждаются в нем», можно без всякой примеси опыта вывести всю чистую математику, а затем применить ее к миру, – точно так же он воображает, что он в состоянии сначала создать из головы основные формы бытия, простые элементы всякого знания, аксиомы философии, из них вывести всю философию, или мировую схематику, и затем высочайше октроировать эту свою конституцию природе и человечеству. К сожалению, природа вовсе не состоит из мантёйфелевских пруссаков 1850 года[40], а человечество состоит из них лишь в самой ничтожной части.
Математические аксиомы представляют собой выражения крайне скудного умственного содержания, которое математике приходится заимствовать у логики. Их можно свести к следующим двум:
1. Целое больше части. Это положение является чистой тавтологией, ибо взятое в количественном смысле представление «часть» уже заранее относится определенным образом к представлению «целое», а именно так, что «часть» непосредственно означает, что количественное «целое» состоит из нескольких количественных «частей». От того, что так называемая аксиома вполне определенно это констатирует, мы ни на шаг не подвинулись вперед. Эту тавтологию можно даже до известной степени доказать, рассуждая так: целое есть то, что состоит из нескольких частей; часть есть то, что, будучи взято несколько раз, составляет целое; следовательно, часть меньше целого, – причем пустота содержания еще резче подчеркивается пустотой повторения.
2. Если