Solid State Physics. Philip Hofmann. Читать онлайн. Newlib. NEWLIB.NET

Автор: Philip Hofmann
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9783527837267
Скачать книгу
alt="phi left-parenthesis bold r 1 comma bold r 2 right-parenthesis equals phi Subscript normal upper A Baseline left-parenthesis bold r 1 right-parenthesis phi Subscript normal upper B Baseline left-parenthesis bold r 2 right-parenthesis"/>, with phi Subscript normal upper A Baseline left-parenthesis bold r 1 right-parenthesis and phi Subscript normal upper B Baseline left-parenthesis bold r 1 right-parenthesis being the wave functions for atomic hydrogen.

      The plus sign in Eq. (2.9) returns a symmetric spatial wave function, which we can combine with an antisymmetric spin wave function with the total spin equal to zero (the so‐called singlet state); the minus in Eq. (2.10) results in an antisymmetric spatial wave function to be combined with a symmetric spin wave function with the total spin equal to 1 (the so‐called triplet state).

Schematic illustration of the energy changes ΔE↑↑ and ΔE↑↓ for the formation of a hydrogen molecule. The dashed lines represent the approximation for long distances.
and
for the formation of a hydrogen molecule. The dashed lines represent the approximation for long distances. The two insets show grayscale images of the corresponding electron probability density.

      (2.11)upper E equals StartFraction integral upper Psi Superscript asterisk Baseline left-parenthesis bold r 1 comma bold r 2 right-parenthesis upper H upper Psi left-parenthesis bold r 1 comma bold r 2 right-parenthesis normal d bold r 1 normal d bold r 2 Over integral upper Psi Superscript asterisk Baseline left-parenthesis bold r 1 comma bold r 2 right-parenthesis upper Psi left-parenthesis bold r 1 comma bold r 2 right-parenthesis normal d bold r 1 normal d bold r 2 EndFraction period

      According to the variational principle in quantum mechanics, the resulting energy will always be higher than the correct ground‐state energy, but it will approach it for a good choice of the trial wave functions.

      upper E 0 is the ground‐state energy for one hydrogen atom; it is multiplied by two because we start with two atoms. The energies normal upper Delta upper E Subscript up-arrow up-arrow and normal upper Delta upper E Subscript up-arrow down-arrow are also shown in Figure 2.4. normal upper Delta upper E Subscript up-arrow up-arrow is always larger than zero and does not lead to any chemical bonding. normal upper Delta upper E Subscript up-arrow down-arrow, on the other hand, shows a minimum with negative energy at approximately 1.5 a 0. This is the bonding state.