. . Читать онлайн. Newlib. NEWLIB.NET

Автор:
Издательство:
Серия:
Жанр произведения:
Год издания:
isbn:
Скачать книгу
href="#ulink_7cd95d9e-d0ed-5258-a4ef-a28aeef9c22c">3 Mendes, R., Garbeva, P., and Raaijmakers, J.M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews Sep 1 37 (5): 634–663.

      4 4 Tkacz, A. and Poole, P. (2015). Role of root microbiota in plant productivity. Journal of Experimental Botany Apr 1 66 (8): 2167–2175.

      5 5 Baetz, U. and Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science Feb 1 19 (2): 90–98.

      6 6 Hu, L., Robert, C.A., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., Van Der Heijden, M.G., and Schlaeppi, K. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications Jul 16 9 (1): 1–3.

      7 7 Tkacz, A. and Poole, P. (2021). The plant microbiome: The dark and dirty secrets of plant growth. Plants, People, Planet Mar 3 (2): 124–129.

      8 8 Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology Oct 6 (10): 763–775.

      9 9 Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O’Toole, P.W. (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research Dec 1 38 (22): e200.

      10 10 Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., and Chen, W. (2012). Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences Apr 17 109 (16): 6241–6246.

      11 11 Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., Rahalkar, M., and Hurek, T. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant–Microbe Interactions Jan 25 (1): 28–36.

      12 12 Wang, X., Wang, M., Xie, X., Guo, S., Zhou, Y., Zhang, X., Yu, N., and Wang, E. (2020). An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin Mar 7 65 (12): 983–986.

      13 13 Prashar, P., Kapoor, N., and Sachdeva, S. (2014). Rhizosphere: Its structure, bacterial diversity and significance. Reviews in Environmental Science and Bio/Technology Mar 13 (1): 63–77.

      14 14 Garbeva, P.V., Van Veen, J.A., and Van Elsas, J.D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology Sep 8 42: 243–270.

      15 15 Schreiter, S., Babin, D., Smalla, K., and Grosch, R. (2018). Rhizosphere competence and biocontrol effect of Pseudomonas sp. RU47 Independent from Plant Species and Soil Type at the Field Scale. Frontiers in Microbiology Feb 1 9: 97.

      16 16 Robin, A., Mazurier, S., Mougel, C., Vansuyt, G., Corberand, T., Meyer, J.M., and Lemanceau, P. (2007). Diversity of root-associated fluorescent Pseudomonads as affected by ferritin overexpression in tobacco. Environmental Microbiology Jul 9 (7): 1724–1737.

      17 17 Di Pietro, A., Lorito, M., Hayes, C.K., Broadway, R.M., and Harman, G.E. (1993). Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology.

      18 18 Harman, G.E., Petzoldt, R., Comis, A., and Chen, J. (2004). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology Feb 94 (2): 147–153.

      19 19 Amadou, M., Duponnois, R., and Marseille, T. (1999). Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology Jan 1 1 (1): 95–101.

      20 20 Haas, D. and Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology Sep 41 (1): 117–153.

      21 21 Tsuge, K., Akiyama, T., and Shoda, M. (2001). Cloning, sequencing, and characterization of the iturin A operon. Journal of Bacteriology Nov 1 183 (21): 6265–6273.

      22 22 Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P., and Vater, J. (1999). Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chemistry & Biology Jan 1 6 (1): 31–41.

      23 23 Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., and Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil Aug 321 (1): 341–361.

      24 24 Asaka, O. and Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology Nov 1 62 (11): 4081–4085.

      25 25 Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., and Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent Pseudomonads as biocontrol agents of soilborne phytopathogens. Letters in Applied Microbiology May 48 (5): 505–512.

      26 26 Guo, Q., Shi, M., Chen, L., Zhou, J., Zhang, L., Li, Y., Xue, Q., and Lai, H. (2020). The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation. Soil Biology & Biochemistry May 1 144: 107755.

      27 27 Rezzonico, F., Binder, C., Défago, G., and Moënne-Loccoz, Y. (2005). The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Molecular Plant–Microbe Interactions Sep 18 (9): 991–1001.

      28 28 Vacheron, J., Moënne-Loccoz, Y., Dubost, A., Gonçalves-Martins, M., Müller, D., and Fluorescent, P.-C.-C. (2016). Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere. Frontiers in Plant Science Aug 25 7: 1212.

      29 29 Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., and Bakker, P.A. (2014). Induced