113 113 Biasucci, G., Rubini, M., Riboni, S., et al. (2010). Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86 (Suppl. 1): 13–15.
114 114 Dominguez‐Bello, M.G., Costello, E.K., Contreras, M., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS. 107(26): 11971‐5.
115 115 Schwartz, S., Friedberg, I., Ivanov, I.V., et al. (2012). A metagenomic study of diet‐dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 13 (4): r32.
116 116 Tanaka, M. and Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66 (4): 515–522.
117 117 Cabrera‐Rubio, R., Collado, M.C., Laitinen, K., et al. (2012). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96 (3): 544–551.
118 118 Hunt, K.M., Foster, J.A., Forney, L.J., et al. (2011). Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6 (6): e21313.
119 119 Zivkovic, A.M., Germana, J.B., Lebrillaa, C.B., and Mills, D.A. (2010). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. PNAS 108 (Suppl. 1): 4653–4658.
120 120 Hopkins, M.J., Macfarlane, G.T., Furrie, E., et al. (2005). Characterisation of intestinal bacteria in infant stools using real‐time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol. 54 (1): 77–85.
121 121 Penders, J., Vink, C., Driessen, C., et al. (2005). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast‐fed and formula‐fed infants by real‐time PCR. FEMS Microbiol. Lett. 243 (1): 141–147.
122 122 Derrien, M., Alvarez, A.S., and de Vos, W.M. (2019). The gut microbiota in the first decade of life. Trends Microbiol. 27 (12): 997–1010.
123 123 Fallani, M., Young, D., Scott, J., et al. (2010). Intestinal microbiota of 6‐week‐old infants across Europe: geographic influence beyond delivery mode, breast‐feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51 (1): 77–84.
124 124 Matsuyama, M., Morrison, M., Cao, K.‐A.L., et al. (2019). Dietary intake influences gut microbiota development of healthy Australian children from the age of one to two years. Sci. Rep. 9 (1): 12476.
125 125 Rinninella, E., Raoul, P., Cintoni, M., et al. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms Jan 10; 7 (1): 14.
126 126 Hollister, E.B., Riehle, K., Luna, R.A., et al. (2015). Structure and function of the healthy pre‐adolescent pediatric gut microbiome. Microbiome Aug 26; 3: 36.
127 127 Ringel‐Kulka, T., Cheng, J., Ringel, Y., et al. (2013). Intestinal microbiota in healthy US young children and adults‐a high throughput microarray analysis. PLoS One May 23; 8 (5): e64315.
128 128 Agans, R., Rigsbee, L., Kenche, H., et al. (2011). Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol. Ecol. 77 (2): 404–412.
129 129 Eckburg, P.B., Bik, E.M., Bernstein, C.N., et al. (2005). Diversity of the human intestinal microbial flora. Science (New York, NY) 308 (5728): 1635–1638.
130 130 Rodríguez, J.M., Murphy, K., Stanton, C., et al. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26: 26050.
131 131 Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al. (2006). An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122): 1027–1031.
132 132 Claesson, M.J., Cusack, S., O'Sullivan, O., et al. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1): 4586–4591.
133 133 Drago, L., Toscano, M., Rodighiero, V., et al. (2012). Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46: S81–S84.
134 134 Burggraf, C., Teuber, R., Brosig, S., and Meier, T. (2018). Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 76 (10): 747–764.
135 135 Kim, S., Haines, P.S., Siega‐Riz, A.M., and Popkin, B.M. (2003). The diet quality index‐international (DQI‐I) provides an effective tool for cross‐national comparison of diet quality as illustrated by China and the United States. J. Nutr. 133 (11): 3476–3484.
136 136 Stookey, J.D., Wang, Y., Ge, K., et al. (2000). Measuring diet quality in china: the INFH‐UNC‐CH diet quality index. Eur. J. Clin. Nutr. 54 (11): 811–821.
137 137 Remans, R., Woodcd, S.A., Saha, N., et al. (2014). Measuring nutritional diversity of national food supplies. Glob. Food Sec. 3 (3): 174–182.
138 138 Zhang, M., Binns, C.W., and Lee, A.H. (2002). Dietary patterns and nutrient intake of adult women in south‐east China: a nutrition study in Zhejiang province. Asia Pac. J. Clin. Nutr. 11 (1): 13–21.
139 139 Nakayama, J., Watanabe, K., Jiang, J., et al. (2015). Diversity in gut bacterial community of school‐age children in Asia. Sci. Rep. 5: 8397.
140 140 Hisada, T., Endoh, K., and Kuriki, K. (2015). Inter‐ and intra‐individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch. Microbiol. 197 (7): 919–934.
141 141 Han, K., Bose, B., Wang, J., et al. (2015). Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 59 (5): 1004–1008.
142 142 Mottet, A., Haan, C., de., Falcucci, A., et al. (2017). Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14: 1–8.
143 143 Poore, J. and Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science 360 (6392): 987–992.
144 144 González‐García, S., Esteve‐Llorens, X., Moreira, M.T., and Feijoo, G. (2018). Carbon footprint and nutritional quality of different human dietary choices. Sci. Total Environ. 644: 77–94.
145 145 Springmann, M., Wiebe, K., Mason‐D'Croz, D., et al. (2018). Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country‐level detail. Lancet Planet Health 2 (10): e451–e461.
146 146 Chotirmall, S.H., Gellatly, S.L., Budden, K.F., et al. (2017). Microbiomes in respiratory health and disease: an Asia‐Pacific perspective. Respirology 22 (2): 240–250.
147 147 Lim, S.S., Vos, T., Flaxman, A.D., et al. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380 (9859): 2224–2260.
148 148 Amine, E., Baba, N.H., Belhadj, M., Yap, M., et al. (2003). Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 916: i–viii, 1–149, backcover.
149 149 Magarey, A., McKean, S., and Daniels, L. (2006). Evaluation of fruit and vegetable intakes of Australian adults: the National Nutrition Survey 1995. Aust. N. Z. J. Public Health 30 (1): 32–37.
150 150 Charlton, K., Kowal, P., Soriano, M.M., et al. (2014). Fruit and vegetable intake and body mass index in a large sample of middle‐aged Australian men and women. Nutrients 6 (6): 2305–2319.
151 151 Costello, S.P. and Bryant, R.V. (2019). Faecal microbiota transplantation in Australia: bogged down in regulatory uncertainty. Intern. Med. J. 49 (2): 148–151.
152 152 MacIntyre, U.E., Kruger, H.S., Venter, C.S., Vorster, H.H., et al. (2002). Dietary intakes of an African population