Социальная психология знания. А. Л. Журавлев. Читать онлайн. Newlib. NEWLIB.NET

Автор: А. Л. Журавлев
Издательство: Когито-Центр
Серия: Психология социальных явлений
Жанр произведения: Общая психология
Год издания: 2016
isbn: 978-5-9270-0335-8
Скачать книгу
значений параметра Ii;

      – межгрупповой дисперсии (Error), характеризующей рассеяние значений Di вне влияния фактора Ii;

      – общей выборочной дисперсии (Total).

      В столбце df приведено число степеней свободы по каждому виду дисперсии. В столбце MS – среднее значение суммы квадратов разностей по каждому виду дисперсии, определяемое как отношение SS/df. В столбце F – значение статистики Фишера для MS. Значение уровня значимости p(Prob > F) для рассчитанного значения статистики F приведено в последнем столбце.

      6

      В промежутки значений [0, q1] и [q3, 1] попадает по 25 % от общего числа точек Di из выборки.

      7

      Столбцы в таблице 2 аналогичны столбцам в таблице 1.

      8

      Аналогично тому, как под метастратегиями понимаются стратегии более высокого уровня – стратегии управления стратегиями.

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAIQGcAwEiAAIRAQMRAf/EAHUAAQADAQEBAQAAAAAAAAAAAAADBAUBAgYHAQEAAAAAAAAAAAAAAAAAAAAAEAACAQMDAgUBBgQFBQAAAAABAgMAEQQhEgUxE0FhcSIUUYEyQiMVBpFigjOhUpIkNNHhcmQWEQEAAAAAAAAAAAAAAAAAAAAA/9oADAMBAAIRAxEAPwD9ApSuEgC50A6mg7So4p4poxLE2+M3sw6G30+tIZop4xLCwdG6MPLqKCSlKUCsubmdmeuIkalTMIC7PtO7Z3XYC3RVIHmTVbN5TMnz8rAwVk/2iKHaNVu00q71BkkuiIosT4nwq+mIs2EI8xo3zDEq5E6KoO/b99bjTXUUFn5EPcji3e+ZS8YsdVW1zf8AqFS1ShxFM0OQsoaGFCmOqgbdjKgN28fuVLkfP7+P8YRGDcfldzdv2W9vb26Xv9aCxWVJzQXPXEVF2mYwb2baboglkYC3RbhfMmqubymdk5uZhceHHw1VN0ar7p3XeN0kgKoiC1/E1onDjnwzFlGNslo1XInRVvv22Li408qCaXNx4WiWRiO+QsZCsVu33bkCwv4XqxVBYTlPHNDlK2LE90jjVHUhQBYtr0N+lT5vz+2nwBEZO4u/vbtvbv77bPxW6UFilK5QdqtyGS+Jhy5Eadx0HtTwJJsL+Qvr5VXyM/K47Bzs7kVjMeOXeBYS12iA9gfd+In6aVV4+bl5sqGbIcx43bZslZFWNS5sVWFT77J4sx1oLPF8k2U80czKXSRlj2qVLIgX8wgk6Nu08rVZTkMZ0mk3bVxy4kv/ACXudPSmTFDvErSmGV17Mb3A+8d1lB0ubVV/SceIPHvK4kiSKyFj/cmK3a59P4mgtPn46Bt7WMYQyjxQSGylqs1SlwYHWSKR/flFTKehcRgD2jw0FS5pzRjP8ARnK07Ymv2+uu7Zr0oJZZFijaRr7UFzYFjYeQ1qtByuDkYR5CKX/aWJEzKyAgaXG4Amqv7lypMXhMgx/wDImUY8IHjJORELf6r1S5KEYj/t7iU0xhOof6N8eMsgPqwvQfQxvvRXsV3C9mFmHqK9ViZ3KZUvJTcdhJIfjRq0xiVS7SS37ab5PYi2Fyx+ytLA+SMSFMyRJcsIvfZLBSxHUAUFmleEljkBMbBwpKttN7MOoPmK6HUkgEEro1vA+dB6pXlWV1DKQynoQbg0DoXKBgXUAst9QD0uKD1Ssvmp8nERMqHOgxES4aLKH5Uv9QIcH0v6V3hOVm5SB5ZcV8bYQFdr9uUf54iwViPVRQadRzSrDE0rglUF22gsbegqSvKuj32MG2na1jexHgaDkckcsayxMHjcBkYagg9CK91gft+TJGLyuLjBd2JmZEeGJL7Bf3qptrtDNW3j9/sR/J2ifaO6I77N9vdt3a2vQSUrlQJ8/wCbJvEXwdi9ojd3u5f3bvw7bUFioTkxDIGKDumK7yoF9q+Bb6X8KmrE/bTtO/K5Ml+6+fLGb9QkIWONfsFBt0rhIAJJsBqSa4WVV3MQFGpYnSg9UrykiSLvjYOp/EpuNPSud2PZ3N47f+e4t/Gg90rlfNy85n8ZljEaSPmWJt2scFctB/Oibo9PMrQfS0rim6g2IuL2PUV2gUpXkMpJAIJXRgPDx1oPGRPHjxNNLftpq5AJ2jxY28B4167kfb7u9e1t3b7jbttfdfpa1dVkkW6kMreI1Br4n5U3/wAv8O57X6l8Dd/6/e6elvb6UH0vLS8qjxLx8kMe+4CSI0jyP9AFZdqgakms39w5+VHiQcY7o02TJjw5U0Z2WE0lmATUgMqkXvWlm8JHmZLZLZeVEWUIUhl2JtHhYL4+NQ53AfKTMtKBJMYHxbjSFsYXj8Tcbr39aDzyz5UnKcbxmHMII23zzqqXtHBt2g6j2liBamFK0P7n5DBX+zNBFlhfBZCTE5/qsCatxYMc2WnKzJJFliHstFuugCsW0t11P/avPH4LjOy+UnXZNlbEjjOpjhiHtBt4sSWNBWzsjk0ypFhfJEYI2iPGSReng7OCavcXJkyQMckyF9xA7sSwtaw/CpartKCjNw3Gz5bZkkN53AWQhmVZAv3e4isFa3mKhxpXhnn+RC4OVkNFDZQQIokspa2u1rG3rWpXPOgpcJFJBxOJDKhjkSMKyHQgjwq9SlBRk4bjZctsx4bzyBRIQzBZNv3d6BtrW8xVeCZohMMvHkc5c02xFRT+VEtkVrEfeVdPWtauedBncMgCZEnx3xWml7jRuoQX2qo2qpPgoufE1pUpQVJeNw5siXJkQmWeE40h3MLxE3tYGw69etch4nBglx5o0IfEiMEBLsdsZtoQTr06mrlKCOeCHJhfHnQSQyqUkRujKdCKzMjiocTC7HHxNumaOFnLGVkhLjfrMW9oW+la9KDD5STKzJMcYkMnaxZ275sA3sKxAxa2OkhYelTZExnyeMmX/hiaVXJ8XCukRP8AUDbztWra3SvKxRJGIlQCMdEA0/hQYjJlfp0Lyh1z5s1ZURzcoDLqo/lEINb1csCQSNR0PrXaCpm8ZiZ7RNkhmMDCSIB2QK6/deyEaivHJ8f82GLtsEyMWRJ8d21AkTwbxswJBq9Sgz5OIwcudc3Jg25TIEkCuwDAahXCMFcDzFRwTSY02RJNBIBNkCDHVFGkcae1tLe0m/8AGtSuWFBi8GcrGHYz1ZcmeR3A/BZh3mYee59redR8cmZJHx0b7x25Z5M9gbfmqW2rJ6s1/srdKIXWQqC6ghWtqA1r29bV3aASQBc9fOgwAvLdrIPHFBEc66b939vdFv27SPbu338r2q/iwzry2RNKlt+PApkUWRnQybwt9dN1aAAAAAsB0ArtBBLhYk08eRNCkk0QIjd1DFL6nbfp0qelKBWZgR5OOvIlYfe+U8kKt7Q4ZUAa/wBLitOlBT4vAHH4vaLb5ZHeaeTpvlkO52/6eVSZGDjZM+PkTKWkxWLwkMRZmG03ANjp9asUoKA4TjhEsQjOxcj5YG9/71926+7/AA6VfpSgVQxcF8PPyZIQDi5rd6Rb2McwAVmH1DgD7av0oKXLDIbBkjxlLSylY/aAbK7BXYhtLBb1Q5DNi+biCVWTEx5ZI3iIUb5lRTCVW/uUXP22vW5UcuPBMu2aJJF+jqGGvrQYKjK/TOVWEWy8jfkCNCD2xINioCuhbbHc28TV2MLJlzTPdeMjxUSEE/kur7mka3koUVoxwxREmNFQtYHaALhdB0+letibdu0bfpbSgqcMMheKxBk37wiXdfr00v5261Ni4WJhx9vEhSFCbkIoW5+pt1qelAqnyfyzihMTcJXdF3rYlE3Au2v8oNXKUGJxMvJRZCxci0jNLGgjVrW3WeWT7o/ACqHzqPAXMkhwIW3hlyJpM91Nvehcqr+TMQfQVumNC6yFQXUEK1tQG629bV0KASQBc9T9aDLwfkqnIHGUMrZLfFDGyC6oHb/x7m46edP0DH/RP0ncem7vW93e3d3u/wCvX/CtQAKAALAdAK7QKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQKUpQf//Z/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGhomMCMeHh4eIzArLicnJy4rNTUwMDU1QEA/QEBAQEBAQEBAQEBA/8AAEQgAIQEgAwEiAAIRAQMRAf/EAHEAAQADAQEBAQAAAAAAAAAAAAADBAUCAQYHAQEAAAAAAAAAAAAAAAAAAAAAEAACAQMCBAUDAgQHAAAAAAABAgMAEQQhEjFBEwVRIjIUBmFxgZFC4VIjFaFyojNTJBYRAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhEDEQA/AP0ClRyTxRMiuwVpTtRebH6CuVy8Z8h8VJUbIjAZ4gQWVToCw5UE1KjhninUvEwcAlTbkw4gjkakoFKUoFUW7tiLmTYTbhLjxiaViPIqHgd3DW1XeGpr4yHK2Z8nyDJKydqy8tsZgeEYitDjz/Ubg178L3oPrcTKXLgWdEkjRtVEqlGt47TrXsWTFNJKkZ3dE7ZGHpDc1v4jnXRmTcqKbvIpaMcQQtufDnXyiTP/AOKxojIY8jPkEDSBipEkszdUswtwG69B9crKyhlIKkXBGoINe1VZZcXDSPBiExjCqkbyFPKNPWVbgPpWb8Zyu5T4n/aiHS6k9pzKZGLCZxs2lRoOHHlQaC9zx3ycnFjDvNiKrSoFI0e+3be27hyqxDNFPEs0LB43F1YcCKycBh/6fuouL9HF058JK87A0q43clQXWLNylx14i191gNNN5NBt1WzstcLGOQyF1DIpAIB/qOsd9fDdWPj9w+SvPEs2MViZ1Eh6AFlJ11901v0q534ye2Ku0EeKShaSaVoyHRw6gWjcW8tBq1DlZMeJjS5U1+lCpd9ouQqi5Nqgde45GDaOWLGymIKyxjrx7bg6bwl7rVL5S4kwYu2qwEncp48Ya67GbdKbf5FNBc/vGIYoJAHL5S74IAp6rrx3bOQtzNd42bBlzyRdJ0mxdpdZVsV6gO3adQbgcqyu2yQw/Iu6jLZYpgsCYiuQo9qqX/p35b77rc624JIJgZobMGNuoBo23TQ8xQSEBgVYXB0IPAilctKiyJGT53uVXmQvE06sfV6N/wCpt3bfFb2uKDiLJillkjjO4wnbIw9Ibjtv4gca8GXB10g3eaVS8R/bIBx2nnavl0nkHwtFLmPLzZWhaQMVYSzTsrksCOAvWl3qIYuL2mPFveLNxkhuSTtN0YXOvoJoN2qs/cIIZhjANNkld/RiG5gnDc3AKPua76eV7wy9Ye06e0Y+wX6m6+/fx4aWrE7BlQwY/c+4dwkWPJbLl9yXPmRYjsijtxsF9I+tBsYOZjZqPNBcMrGKVWXa6OnFHHiL1JFkxTPKsZ3CE7Xf9oYcVv4jnWX8fxsqPFzM+ZDHkdxnfJWFuKIQFiVvrZdayklY/C8KDqNHNnukDSBipDyyM0xYj6Br0H1IyoTOsF7O674z+2RRxKHna+tTVid5jGMezLj3DR5sUaakt02R1kFzrbZT5Pldxgwm9rEOluhvOJTG6sZUG0KFOh4cedBt1R7d3Jc85G1OmIJDHZj5z9WQgFb1JHJnviszwRxZVyFjMhZLX4l1S/8Apqn2czGSV3eCbcFEsySmSQlR5AR0o1tbnQWn7njJnnt7bhMIuuzEeQR327i/Aa13hZUWbGMmON0DaK0iFGZfEX1tXysuQf7llfIJisvalylwp4+IEUQCLN9QsrG4/PKvsVZXUOhDKwurA3BB8DQRx5MUs0kMZLNDYSMPSrHXbfxtrXnu4OtHDu80oJib9r7fUFPiONfMR5Mkfw+dy5TNyp5omcEqwnlyGjvuFuA/wFX+9wrh9q7dFiEs0GVirjkkknzhefipNBLgSNk/Je5tIbjBjgggX+USqZZD+Tb9K4x1UfMMywAvgwk25nqPVz2UmP3d+4QDdHmIkWUgNiGjv05RfjoSp/FSp22BO5SdyDOciWMRMCRs2KbgAW8aCgspx/lrYyf7WZhiaReXVifphvypt+K26zsXCkfuc3dcgbHaNcfHj5rErFyWtzdj+lq0aBSlKDwgMCrAEHQg8Ki9pidPpdCPp3vs2Ltv42tapqUFRMQpn+4G1YVhEMca6WO4s2nDwr2HAghaQKAYXfrLEwBCSnVmS/C51+9WqUCuVRUG1AFGpsBYXOprqlBC2PHd5IlWOdxYyhQW/jTExYcPHTHhFo0vx1JJO5mJ8STc1NSgVU7lHkyYxjxo1kd7q29tlkYEMVba+ttOFW6UEWNGIseKIIIwiKoRTcLYW2g6XtXrwQSMryRo7L6WZQSPsTUlKCGbFxcjb7iGObb6eooa323CpGIjjJC6INFUeA4AV1SgzoYcls7HzpRbfjGKRP8Ajcssn8Kllx5Je54848sePHKGP8zS7AF/G29XKUFWLAgieXaAYpX63SYAhZT6nW/C/H7611LiJNkxZEp3CC5hj5K7DaXPibaDwqxSgViydjzTnvnR5y9RyCRJjRSbQvpVG8rC33rapQcRI0cYVnMjD1O1rk/jSoIMCCAuFAMLP1kiYAiOQm7Mnhcm9WqUFd8RJMuPKkO4wAiFeSFxZm+pI0+1TMiuNrgMvgRcaa11Sg8N7acayexdryO3xzJPsKybLKPNYhbMAbDyfyryrXpQQ+0xOmYuhH0yblNi7SfG1qkREjUIihUXQKosB+BXVKCrH2+COWZgAYp36rxMAVEvN1vwvbX6611NiJPkQzSncsB3xR8hJYrvPiQDpVilApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlApSlB//Z/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAHgAA/+4ADkFkb2JlAGTAAAAAAf/bAIQAEAsLCwwLEAwMEBcPDQ8XGxQQEBQbHxcXFxcXHx4XGhoaGhceHiMlJyUjHi8vMzMvL0BAQEBAQEBAQEBAQEBAQAERDw8RExEVEhIVFBEUERQaFBYWFBomGhocGho