Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119807698
Скачать книгу
Mercury vapors released from elemental mercury occur naturally in the environment as a consequence of the removal of gases from the earth’s crust, volcanic eruptions, and evaporation from oceans and soils. Anthropogenic sources such as metal mining, smelting (with mercury, gold, copper, and zinc), coal combustion, municipal incinerators, and the chloralkaline industry contribute significantly to atmospheric mercury, and mercury vapors are stable within the atmosphere for about one year (Tokar et al. 2013). Once released into the environment, the various forms of mercury undergo complex oxidation-reduction and methylation-demethylation reactions known as the mercury cycle, which further gives rise to inorganic or organic species that become globally distributed.

      Ding et al. (2016) investigated the plasma miRNA expression profile for female workers in eastern China who were occupationally exposed to inorganic mercury and found that four miRNAs (miR-16-5p, miR-30c-3p, miR-181a-5p, and let-7e-5p) were downregulated and four miRNAs (miR-92a-3p, miR-122-5p, miR-451a, and miR-486-5p) were upregulated, as measured by microarray. Validation of these miRNAs by TaqMan-based RT-qPCR revealed that two miRNAs, namely miR-92a-3p and miR-486-5p, were consistently upregulated when measured by both methods.

      Both metallic and organic mercury compounds are oxidized to inorganic mercury in the blood and in the liver, which plays a key role in animal toxicity (Tchounwou et al. 2003). However, organomercurial compounds are generally more toxic to animals than inorganic mercury on account of their high bioaccumulation potential, and methyl mercury (MeHg) is toxicologically the most important organic form. In humans, consumption of methyl mercury-contaminated fish is the predominant route of exposure to organomercury, but other consumables such as drinking water, cereals, vegetables, and meat can also be sources of exposure (Holmes et al. 2009; Karagas et al. 2012; Yang et al. 2020). Early stages of life are generally more sensitive to mercury, such that exposure to high-level elemental, inorganic, and organic mercury results in severe developmental and neurological defects, depending on the length and dose of this exposure (Yang et al. 2020). However, to date, no literature exists that has examined circulating miRNAs that are due to the consumption of methylmercury-containing food sources.

      Circulating miRNAs Associated with Cadmium Exposure

      Few studies have addressed cadmium-induced alterations in miRNA expression in humans. miR-122-5p and miR-326-3p were found to be upregulated in the serum of a cadmium-exposed population from China (Yuan et al. 2020). The commonly used biomarkers for cadmium exposure, urinary β2-microglobulin and retinol-binding protein, remained in the normal range, which suggests that these two miRNAs exhibited greater sensitivity to cadmium exposure than the urinary markers; and this makes them suitable candidates for the early detection of exposure (Yuan et al. 2020). In another study, levels of miRNAs were measured from the serum and urine of patients in China diagnosed with occupational chronic cadmium poisoning (Chen et al. 2021). In the urine, 16 miRNAs were found to be upregulated and 36 downregulated, while in the serum 46 miRNAs were upregulated and 131 were downregulated. An overlap of 59 abnormally expressed miRNAs was found between serum and urine samples of occupational chronic cadmium poisoning patients; these included miR-122-5p, miR-363-3p, miR-129-5p, miR-204-3p and miR-361-3p (Chen et al. 2021). In individuals exposed to low-levels of cadmium in China, the levels of miR-21 and miR-29b in plasma were upregulated. Serum levels of miR-30 were decreased in Chinese chronic obstructive pulmonary disease (COPD) patients with elevated levels of cadmium in serum by comparison to the levels in healthy control subjects. Additionally, an epithelial-mesenchymal transition was observed in the lung tissue of these patients (Zheng et al. 2021). In another study, individuals in India who were occupationally exposed to cadmium presented elevated levels of serum miR-221 and IL-17, a pro-inflammatory cytokine (Goyal et al. 2021; Zenobia and Hajishengallis 2015). Overall, several studies have identified differentially expressed miRNAs in the urine, serum, and plasma of individuals exposed to cadmium only in the Chinese population.

      Circulating miRNAs Associated with Chromium Exposure