88 88 Rashid, A., Mazhar, S.H., Zeng, Q., Kiki, C., Yu, C., and Sun, Q. (2020). Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. J. Chromatogr. B 1145: 122103. doi: 10.1016/j.jchromb.2020.122103.
89 89 Fauzan, T., Omar, T., Zaharin, A., Yuso, F., and Mustafa, S. (2017). An improved SPE-LC-MS/MS method for multiclass endocrine disrupting compound determination in tropical estuarine sediments. Talanta 173: 51–59. doi: 10.1016/j.talanta.2017.05.064.
90 90 Hemström, P. and Irgum, K. (2006). Hydrophilic interaction chromatography. J. Sep. Sci. 29: 1784–1821. doi: 10.1002/jssc.200600199.
91 91 Montes, R., Aguirre, J., Vidal, X., Rodil, R., Cela, R., and Quintana, J.B. (2017). Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry. Environ. Sci. Technol. 51(11): 6250–6259. doi: 10.1021/acs.est.6b05135.
92 92 Miossec, C., Mille, T., Lanceleur, L., and Monperrus, M. (2020). Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem. 322: 126765. doi: 10.1016/j.foodchem.2020.126765.
93 93 Afsa, S., Hamden, K., Martin, P.A.L., and Mansour, H.B. (2020). Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environ. Sci. Pollut. Res. Int. 27(2): 1941–1955. doi: 10.1007/s11356-019-06866-5.
94 94 Liang, Y., Liu, J., Zhong, Q., Yu, D., Yao, J., Huang, T., Zhu, M., and Zhou, T. (2019). A fully automatic cross used solid-phase extraction online coupled with ultra-high performance liquid chromatography–tandem mass spectrometry system for the trace analysis of multi-class pharmaceuticals in water samples. J. Pharm. Biomed. Anal. 174: 330–339. doi: 10.1016/j.jpba.2019.06.004.
95 95 Tahrani, L., Loco, J.V., Anthonissen, R., Verschaeve, L., Mansour, H.B., and Reyns, T. (2017). Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Sci. Technol. 76(11–12): 3000–3021. doi: 10.2166/wst.2017.465.
96 96 Errayess, S.A., Lahcen, A.A., Idrissi, L., Marcoaldi, C., Chiavarini, S., and Amine, A. (2017). A sensitive method for the determination of Sulfonamides in seawater samples by solid phase extraction and UV–visible spectrophotometry. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 181: 276–285. doi: 10.1016/j.saa.2017.03.061.
97 97 Ngubane, N.P., Naicker, D., Ncube, S., Chimuka, L., and Madikizela, L.M. (2019). Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: A case of northern Durban in KwaZulu–Natal Province of South Africa. Reg. Stud. Mar. Sci. 29: 100675. doi: 10.1016/j.rsma.2019.100675.
98 98 Omotola, E.O. and Olatunji, O.S. (2020). Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon 6(12): e05787. doi: 10.1016/j.heliyon.2020.e05787.
99 99 Gago-Ferrero, P., Bletsou, A.A., Damalas, D.E., Aalizadeh, R., Alygizakis, N.A., Singer, H.P., Hollender, J., and Thomaidis, N.S. (2020). Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 387: 121712. doi: 10.1016/j.jhazmat.2019.121712.
100 100 Mhuka, V., Dube, S., and Nindi, M.M. (2020). Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 6: 250–258. doi: 10.1016/j.emcon.2020.07.002.
101 101 Louw, S., Njoroge, M., Chigorimbo-Murefu, N., and Chibale, K. (2012). Comparison of electrospray ionisation, atmospheric pressure chemical ionisation and atmospheric pressure photoionisation for the identification of metabolites from labile artemisinin-based anti-malarial drugs using a QTRAP® mass spectrometer. Rapid Commun. Mass Spectrom. 26(20): 2431–2442. doi: 10.1002/rcm.6359.
102 102 Wu, X., Conkle, J.L., and Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. J. Chromatogr. A 1254: 78–86. doi: 10.1016/j.chroma.2012.07.041.
103 103 Kiszkiel-Taudul, I. (2021). Determination of antihistaminic pharmaceuticals in surface water samples by SPE-LC-MS/MS method. Microchem. J. 162: 105874. doi: 10.1016/j.microc.2020.105874.
104 104 Duan, Y.P., Dai, C.M., Zhang, Y.L., and Chen, L. (2013). Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal. Chim. Acta 758: 93–100. doi: 10.1016/j.aca.2012.11.010.
105 105 Ebele, A.J., Abdallah, M.A.E., and Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3(1): 1–16. doi: 10.1016/j.emcon.2016.12.004.
106 106 Maranata, G.J., Surya, N.O., and Hasanah, A.N. (2021). Optimising factors affecting solid phase extraction performances of molecular imprinted polymer as recent sample preparation technique. Heliyon 7(1): e05934. doi: