42 Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018). High‐definition and low‐noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8, 3207. https://doi.org/10.1038/s41598‐018‐21423‐9
43 Oppenheimer, C., Lomakina, A. S., Kyle, P. R., Kingsbury, N. G., & Boichu, M. (2009). Pulsatory magma supply to a phonolite lava lake. Earth and Planetary Science Letters, 284, 392–398. https://doi.org/10.1016/j.epsl.2009.04.043
44 Particle Data Group (2020). The Review of Particle Physics. Progress of Theoretical and Experimental Physics 2020, 083C01.
45 Petrova, O. (2019). Particle and Cosmology, 16th Baksan School on Astroparticle Physics. East‐west asymmetry effect in atmospheric muon flux in the Far Detector of NOvA, Retrieved from http://www.inr.ac.ru/~school/lectures/Petrova.pdf
46 Prettyman, T. H., Koontz, S. L., Pinsky, L. S., Empl, A. M, Ittlefehldt, D. W., Reddell, B. D., & Sykes, M. V. (2013). NIAC Phase I Final Report, The National Aeronautics and Space Administration. Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Showers (Grant Number NNX13AQ94G). Retrieved from https://www.nasa.gov/sites/default/files/files/Prettyman_2013_PhI_MuonDeepMapping.pdf
47 Saftoiu, A., Bercuci, A., Brancus, M., Duma, M., Haungs, A., Mitrica, B., et al. (2012). Measurements of the cosmic muon flux with the WILLI detector as a source of information about solar events. Romanian Journal of Physics, 56, 664–672.
48 Shinohara H., & Tanaka H. K. M. (2012). Conduit magma convection of a rhyolitic magma: Constraints from cosmic‐ray muon radiography of Iwodake, Satsuma‐Iwojima volcano, Japan. Earth and Planetary Science Letters, 349–350, 87–97. https://doi.org/10.1016/j.epsl.2012.07.002
49 Shinohara, H., & Witter, J. (2005). Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophysical Research Letters, 32, L20308. https://doi.org/10.1029/2005GL024131
50 Shinohara, H., Aiuppa, A., Giudice, G., Gurrieri, S., & Liuzzo, M. (2008) Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy. Journal of Geophysical Research, 113, B09203. https://doi.org/10.1029/2007JB005185
51 Smart, D. F., & Shea, M. A. (1994). Geomagnetic cutoffs: a review for space dosimetry applications. Advances in Space Research, 14(10), 787–796. https://doi.org/10.1016/0273‐1177(94)90543‐6
52 Taira, H., & Tanaka, H. K. M. (2010). A potential space‐ and power‐effective muon sensor module for imaging a volcano. Earth, Planets and Space, 62, 179–186. https://doi.org/10.5047/eps.2009.06.005
53 Tanaka, H. K. M. (2007). Monte‐Carlo simulations of atmospheric muon production: Implication of the past Martian environment. Icarus, 191, 603–615. https://doi.org/10.1016/j.icarus.2007.05.014
54 Tanaka, H. K. M. (2013) Development of stroboscopic muography. Geoscientific Instrumentation, Methods and Data Systems, 2, 41–45. https://doi.org/10.5194/gi‐ 2‐41‐2013
55 Tanaka, H.K.M. (2015). Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan. Scientific Reports, 5, 8305. https://doi.org/10.1038/srep08305
56 Tanaka, H. K. M. (2016). Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography. Scientific Reports, 6, 39741. https://doi.org/10.1038/srep39741
57 Tanaka, H. K. M. (2020a). Development of the muographic tephra deposit monitoring system. Scientific Reports, 10, 14820. https://doi.org/10.1038/s41598‐020‐71902‐1
58 Tanaka, H. K. M. (2020b). Muometric positioning system (μPS) with cosmic muons as a new underwater and underground positioning technique. Scientific Reports, 10, 18896. https://doi.org/10.1038/s41598‐020‐75843‐7
59 Tanaka, H. K. M. (2020c). Development of automatic analysis and data visualization system for volcano muography. Journal of Disaster Research, 15, 2, 203–211. https://doi.org/10.20965/jdr.2020.p0203
60 Tanaka H. K. M., Kusagaya, T., & Shinohara, H. (2014). Radiographic visualization of magma dynamics in an erupting volcano. Nature Communications, 5, 3381. https://doi.org/10.1038/ncomms4381
61 Tanaka, H. K. M., Miyajima, H., Kusagaya, T., Taketa, A., Uchida, T., Tanaka, M. (2011). Cosmic muon imaging of hidden seismic fault zones: Raineater permeation into the mechanical fracture zone in Itoigawa‐Shizuoka Tectonic Line, Japan. Earth and Planetary Science Letters, 306, 156–162. https://doi.org/10.1016/j.epsl.2011.03.036
62 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., et al. (2007a). High resolution imaging in the inhomogeneous crust with cosmic‐ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan. Earth and Planetary Science Letters, 263, 104–113. https://doi.org/10.1016/j.epsl.2007.09.001
63 Tanaka, H. K. M., Nakano, T., Takahashi, S., Yoshida, J., Takeo, M., Oikawa, J., et al. (2008). Radiographic imaging below a volcanic crater floor with cosmic‐ray muons. American Journal of Science, 308, 843–850. https://doi.org/10.2475/07.2008.02
64 Tanaka, H. K. M., & Ohshiro, M. (2017). Muography. Maruzen, Tokyo, pp. 1–352.
65 Tanaka, H. K. M., & Sannomiya, A. (2012). Development and operation of a muon detection system under extremely high humidity environment for monitoring underground water table. Geoscientific Instrumentation Methods and Data Systems, 2, 719–736. https://doi.org/10.5194/gi‐2‐29‐2013
66 Tanaka H. K. M., Taira, H., Uchida, T., Tanaka, M., Takeo, M., Ohminato, T., et al. (2010). Three dimensional CAT scan of a volcano with cosmic ray muon radiography. Journal of Geophysical Research, 115, B12332. https://doi.org/10.1029/2010JB007677
67 Tanaka H. K. M., Takahashi S., Yoshida J., Ohshima H., Maekawa T., Watanabe H., & Niwa K. (2007b). Imaging the conduit size of the dome with cosmic‐ray muons: the structure beneath ShowaShinzan Lava Dome, Japan. Geophysical Research Letters, 34, L22311. https://doi.org/10.1029/2007GL031389
68 Tanaka, H. K. M., Uchida, T., Tanaka, M., Shinohara, H., & Taira, H. (2009a). Cosmic‐ray muon imaging of magma in a conduit: degassing process of Satsuma‐Iwojima Volcano, Japan. Geophysical Research Letters, 36, L01304. https://doi.org/10.1029/2008GL036451
69 Tanaka H. K. M., Uchida T., Tanaka M., Takeo M., Oikawa J., Ohminato T., et al. (2009b). Detecting