7 Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid‐saturated porous solid, part‐II‐higher frequency range, J. Acoust. Soc. Am., 28, 2, 179–191.
8 Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 4, 1482–1498.
9 Biot, M. A. and Willis, P. G. (1957). The elastic coefficients of the theory consolidation, J. Appl. Mech., 24, 594–601.
10 Bishop, A. W. (1959). The principle of effective stress, Teknisk Ukeblad, 39, 859–863.
11 Boussinesq, J. (1876). Essai théorique sur l'equilibre d'elasticité des massif pulvérulents, Mem. savants étrangers, Acad. Belgique, 40, 1–180.
12 De Boer, R. (1996). Highlights in the historical development of the porous media theory, Appl. Mech. Rev., 49, 201–262.
13 De Boer, R., Schiffman, R. L. and Gibson, R. E. (1996). The origins of the theory of consolidation: the Terzaghi‐Fillunger dispute, Géotechnique, 46, 2, 175–186.
14 Fillunger, P. (1913a). Der Auftrieb in Talsperren. Österr. Wochenschrift öffentlichen Baudienst, 532–556.
15 Fillunger, P. (1913b). Der Auftrieb in Talsperren. Österr. Wochenschrift öffentlichen Baudienst, 567–570.
16 Fillunger, P. (1915). Versuch über die Zugfestigkeit bei allseitigem Wasserdruck, Österr. Wochenschrift offentl. Baudienst, H29, 443–448.
17 Gray, W. G., Schrefler, B. A., and Pesavento, F. (2009). The solid stress tensor in porous media mechanics and the Hill‐Mandel condition, J. Mech. Phys. Solids., 57, 539–544.
18 Leliavsky, S. (1947). Experiments on effective area in gravity dams, Trans. Am. Soc. Civ. Eng., 112, 444.
19 Levy, M. M. (1895). Quelques Considerations sur la construction des grandes barrages. Comptes Rendus De L'Academie Des Sciences Serie I‐Mathematique, 288.
20 Lewis, R. W. and Schrefler, B. A. (1982). A finite element simulation of the subsidence of gas reservoirs undergoing a waterdrive, in Finite Element in Fluids, 4 R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz(Eds), Wiley, 179–199.
21 Liakopoulos, A. C. (1965). Transient flow through unsaturated porous media. D. Eng. dissertation, University of California, Berkeley.
22 Lloret, A. and Alonso, E. E. (1980). Consolidation of unsaturated soils including swelling and collapse behaviour, Géotechnique, 30, 449–447.
23 Lyell, C. (1871). Student's elements of geology, London.
24 McHenry, D. (1948). The effect of uplift pressure on the shearing strength of concrete—R.48. International Congress Large Dams, 3rd, Stockholm, Vol. I.
25 Müller, L. (1965). The Rock slide in the Vajont Valley, Fels Mechanik, 2, 148–212.
26 Narasimhan, T. N. and Witherspoon, P. A. (1978). Numerical model for saturated‐unsaturated flow in deformable porous media 3. Applications. Water Resour. Res., 14, 1017–1034.
27 Neuman, S. P. (2017). Galerkin approach to saturated‐unsaturated flow in porous media. International Symposium on the Finite Element Methods in Flow Problems, Finite Elem in Fluids – Swansea, Wales (1 January 2017), 201–217.
28 Nuth, M., Laloui, L. (2008). Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int. J. Numer. Anal. Methods Geomech., 32, 771–801.
29 Reynolds, O. (1886). Experiments showing dilatancy, a property of granular material, Proc. R. Inst., 11, 354–363.
30 Safai, N. M. and Pinder, G. F. (1979). Vertical and horizontal land deformation in a desaturating porous medium, Adv. Water Resour. 2, 19–25.
31 Seed, H. B. (1979). Consideration in the earthquake resistant design of earth and rockfill dams, Géotechnique, 29, 3, 215–263.
32 Seed, H. B., Idriss, I. M., Lee, K. L. and Makdisi, F. I. (1975). Dynamic analysis of the slide in the Lower San Fernando dam during the earthquake of February 9, 1971, J. Geotech. Eng. Div., ASCE, 101, 9, 889–911.
33 Serafim, J. L. (1954). A subpressëo nos barreyens—Publ. 55, Laboratorio Nacional de Engenheria Civil, Lisbon.
34 Serafim, J. L. (1964). The ‘uplift area’ in plain concrete in the elastic range—C. 17. International Congress on Large Dams, 8th Congress, Edinburgh, Vol. 5, Comm. 17, pp. 599–622; also: “Deformations du b4ton dues aux press ions dans les pores,” Bull. RILEM, No. 27, 1965, pp. 73–76.
35 Skempton, A. W. (1960). Effective stress in soils, concretes, and rocks. Proceedings Conference Pore Pressures and Suction in Soils, 4–16. London: Butterworths.
36 Terzaghi K. von (1936). The shearing resistance of saturated soils, Proc. 1st ICSMFE, 1, 54–56.
37 Terzaghi, K. von and Rendulic, L. (1934). Die wirksame Flächenporosität des Betons, Z. Öst. Ing.‐u. ArchitVer., 86, 1/2, 1–9.
38 Van Genuchten, M. T., Pinder, G. F., and Saukin, W. P. (1977). Modeling of leachate and soil interactions in an aquifer—EPA‐600/9‐77‐026. Management of Gas and Leachate in Landfills: Proceedings of the Third Annual Municipal Solid Waste Research Symposium, St Louis, Missouri (14, 15 and 16 March 1977), 95–103.
39 Zienkiewicz, O. C. (1947). The stress distribution in gravity dams, J. Inst. Civ. Eng., 27, 244–271.
40 Zienkiewicz, O. C. (1963). Stress analysis of hydraulic structures including pore pressures effects, Water Power, 15, 104–108.
2 Equations Governing the Dynamic, Soil–Pore Fluid, Interaction
2.1 General Remarks on the Presentation
In this chapter, we shall introduce the reader to the equations which govern both the static and dynamic phenomena in soils containing pore fluids. We shall divide the presentation into three sections: Section 2.2 will deal with soil, or indeed any other porous medium, saturated with a single fluid. This most common problem contains all the essential features of soil behavior and the equations embrace and explain the vast majority of problems encountered in practice.
We shall show here how the dynamic equations, which are essential for the study of earthquakes, reduce to those governing the quasi‐static situations of consolidating soils and indeed to purely static problems without modification. This feature will be used when discretization is introduced and computer codes are derived since a single code will be capable of dealing with most phenomena encountered in soil and rock mechanics.
The limitations of the approximating simplification are discussed in Section 2.2 by using a simple linearized example and deriving conclusions on the basis of an available analytical solution. The same discussion will show the domain of the validity of the assumptions of undrained and fully drained behavior.
In the same section, we shall introduce a simplification which is valid for the treatment of most low‐frequency phenomena – and this simplified form will be used in the subsequent Section 2.3 dealing with partially saturated soil in which the air pressure is assumed constant and also, finally, in Section 2.4 dealing with simultaneous water and airflow in the pores.
The notation used throughout this chapter will generally be of standard, tensorial form. Thus:
Alternatively,