Fractures in the Horse. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9781119431756
Скачать книгу
N.A., Scollay, M.C. et al. (2003). Macroscopic changes in the distal ends of the third metacarpal and metatarsal bones of Thoroughbred racehorses with condylar fractures. Am. J. Vet. Res. 64: 1110–1116.

      61 61 Le Jeune, S.S., Macdonald, M.H., Stover, S.M. et al. (2003). Biomechanical investigation of the association between suspensory ligament injury and lateral condylar fracture in Thoroughbred racehorses. Vet. Surg. 32: 585–597.

      62 62 Riggs, C. and Boyde, A. (1999). Effect of exercise on bone density in distal regions of the equine third metacarpal bone in 2‐year‐old thoroughbreds. Equine Vet. J. Suppl. 31: 555–560.

      63 63 Riggs, C.M., Whitehouse, G.H., and Boyde, A. (1999). Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet. J. 31: 140–148.

      64 64 Pinchbeck, G. and Murphy, D. (2001). Cervical vertebral fracture in three foals. Equine Vet. Educ. 13: 8–12.

      65 65 Ehrle, A., Jones, S., Klose, P., and Lischer, C. (2012). Atypical radiologic appearance of a second cervical vertebral fracture in a horse. J. Equine Vet. Sci. 32: 309–313.

      66 66 Muno, J., Samii, V., Gallatin, L. et al. (2009). Cervical vertebral fracture in a Thoroughbred filly with minimal neurological dysfunction. Equine Vet Educ. 21: 527–531.

      67 67 Firth, E., Rogers, C., Doube, M., and Jopson, N. (2005). Musculoskeletal responses of 2‐year‐old Thoroughbred horses to early training. 6. Bone parameters in the third metacarpal and third metatarsal bones. N. Z. Vet. J. 53: 101–112.

      68 68 Nixon, A.J., Stover, S.M., and Nunamaker, D.M. (2019). Third metacarpal dorsal stress fractures. In: Equine Fracture Repair, 2e (ed. A.J. Nixon), 452–464. Hoboken, NJ: Wiley.

      69 69 Nunamaker, D.M., Butterweck, D.M., and Provost, M.T. (1990). Fatigue fractures in Thoroughbred racehorses: relationships with age, peak bone strain, and training. J. Orthop. Res. 8: 604–611.

      70 70 Wirtz, D.C., Schiffers, N., Pandorf, T. et al. (2000). Critical evaluation of known bone material properties to realize anisotropic FE‐simulation of the proximal femur. J. Biomech. 33: 1325–1330.

      71 71 Keaveny, T.M. and Hayes, W.C. (1993). A 20‐year perspective on the mechanical properties of trabecular bone. J. Biomech. Eng. 115: 534–542.

      72 72 Keaveny, T. and Hayes, W. (1992). Mechanical properties of cortical and trabecular bone. In: Bone, 7e (ed. B. Hall), 285–344. Boca Raton, FL: CRC Press.

      73 73 Selker, F. and Carter, D.R. (1989). Scaling of long bone fracture strength with animal mass. J. Biomech. 22: 1175–1183.

      74 74 Sherman, K.M., Miller, G.J., Wronskl, T.J. et al. (1995). The effect of training on equine metacarpal bone breaking strength. Equine Vet. J. 27: 135–139.

      75 75 Dowthwaite, J.N., Flowers, P.P.E., Spadaro, J.A., and Scerpella, T.A. (2007). Bone geometry, density, and strength indices of the distal radius reflect loading via childhood gymnastic activity. J. Clin. Densitom. 10: 65–75.

      76 76 Daegling, D.J. (2002). Estimation of torsional rigidity in primate long bones. J. Hum. Evol. 43: 229–239.

      77 77 Edwards, W.B., Schnitzer, T.J., and Troy, K.L. (2013). Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J. Biomech. 46: 1655–1662.

      78 78 Haider, I.T., Schneider, P., Michalski, A., and Edwards, W.B. (2018). Influence of geometry on proximal femoral shaft strains: implications for atypical femoral fracture. Bone 110: 295–303.

      79 79 Setterbo, J.J., Garcia, T.C., Campbell, I.P. et al. (2009). Hoof accelerations and ground reaction forces of Thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces. Am. J. Vet. Res. 70: 1220–1229.

      80 80 Malekipour, F., Hitchens, P.L., Whitton, R.C., and Lee, P.V.‐S. (2020). Effects of in vivo fatigue‐induced subchondral bone microdamage on the mechanical response of cartilage‐bone under a single impact compression. J. Biomech. 100: 109–594.

      81 81 Davies, H.M.S., McCarthy, R.N., and Jeffcott, L.B. (1993). Surface strain on the dorsal metacarpus of thoroughbreds at different speeds and gaits. Cells Tissues Organs 146: 148–153.

      82 82 Evans, G.P., Behiri, J.C., Vaughan, L.C., and Bonfield, W. (1992). The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet. J. 24: 125–128.

      83 83 Kulin, R.M., Jiang, F., and Vecchio, K.S. (2011). Effects of age and loading rate on equine cortical bone failure. J. Mech. Behav. Biomed. Mater. 4: 57–75.

      84 84 Rubin, C.T. and Lanyon, L.E. (1982). Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J. Exp. Biol. 101: 187–211.

      85 85 Riggs, C.M. (2002). Fractures – a preventable hazard of racing thoroughbreds? Vet. J. 163: 19–29.

      86 86 Bailey, C.J., Reid, S.W.J., Hodgson, D.R. et al. (1998). Flat, hurdle and steeple racing: risk factors for musculoskeletal injury. Equine Vet. J. 30: 498–503.

      87 87 Martig, S., Chen, W., Lee, P.V.S., and Whitton, R.C. (2014). Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 46: 408–415.

      88 88 Pinchbeck, G.L., Clegg, P.D., Boyde, A. et al. (2013). Horse‐, training‐ and race‐level risk factors for palmar/plantar osteochondral disease in the racing Thoroughbred. Equine Vet. J. 45: 582–586.

      89 89 Kawcak, C.E., McIlwraith, C.W., Norrdin, R.W. et al. (2000). Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses. Am. J. Vet. Res. 61: 1252–1258.

      90 90 Cui, W. (2002). A state‐of‐the‐art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7: 43–56.

      91 91 Carter DaH, W.C. (1977). Compact bone fatigue damage – I. residual strength and stiffness. J. Biomech. 10: 325–337.

      92 92 Carter DaH, W.C. (1977). Compact bone fatigue damage: a microscopic examination. Clin. Orthop. Relat. Res.: 265–274.

      93 93 Carter, D.R., Caler, W.E., Spengler, D.M., and Frankel, V.H. (1981). Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52: 481–490.

      94 94 Hastings A, Gibson LJ, Moore TLA, Cheng DW, Guo XE. Endurance limit for bovine trabecular bone. Paper presented at: Orthopedic Research Society 2004 Annual Meeting; Mar 7–10, 2004; San Francisco, CA, USA.

      95 95 Ganguly, P., Moore, T.L.A., and Gibson, L.J. (2004). A phenomenological model for predicting fatigue life in bovine trabecular bone. J. Biomech. Eng. 126: 330–339.

      96 96 Zioupos, P. and Currey, J.D. (1994). The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29: 978–986.

      97 97 Fleck, C. and Eifler, D. (2003). Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J. Biomech. 36: 179–189.

      98 98 Schaffler, M., Radin, E., and Burr, D. (1989). Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10: 207–214.

      99 99 Martin, R.B., Gibson, V.A., Stover, S.M. et al. (1996). in vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J. Orthop. Res. 14: 794–801.

      100 100 Burr, D.B. and Martin, R.B. (1989). Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186: 186–216.

      101 101 Reilly, G.C., Currey, J.D., and Goodship, A.E. (1997). Exercise of young Thoroughbred horses increases impact strength of the third metacarpal bone. J. Orthop. Res. 15: 862–868.

      102 102 Ritchie, R. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: role of crack tip shielding. Mater. Sci. Eng. A 103: 15–28.

      103 103 Ritchie, R.O. (1999). Mechanisms of fatigue‐crack propagation in ductile and brittle solids. Int. J. Fract. 100: 55–83.

      104 104 Malik, C., Stover, S., Martin, R., and Gibeling, J.