The primary determining factor of hazard for metals and metal compounds is therefore toxicity, which requires consideration of dose (indeed, the fundamental tenet of toxicology is the dose makes the poison). Historically, it has been the practice to measure the toxicity of soluble metal salts, or indeed the toxicity of the free metal ion. However, in different media, metal ions compete with different types or forms of organic matter (e.g., fish gills, suspended solids, soil particulate material) to reduce the total amount of metals present in bioavailable form. Toxicity of the bioavailable fraction (i.e., as determined through transformation processes) is the most appropriate and technically defensible method for categorizing and ranking the hazard of metals and metal compounds.
The relative proportion of hazardous constituents present in any collection of chemicals (crude oil-derived products included) is variable and rarely consistent because of site differences. Therefore, the extent of the contamination will vary from one site to another and, in addition, the farther a contaminant progresses from low molecular weight to high molecular weight the greater the occurrence of polynuclear aromatic hydrocarbons, complex ring systems (not necessity aromatic ring systems) as well as an increase in the composition of the semi-volatile chemicals or the non-volatile chemicals. These latter chemical constituents (many of which are not so immediately toxic as the volatiles) can result in long-term/chronic impacts to the flora and fauna of the environment. Thus, any complex mixture of chemicals should be analyzed for the semi-volatile compounds which may pose the greatest long-term risk to the environment.
Heavy metals are common chemical pollutants. The most common heavy metals found at contaminated sites, in order of abundance are Pb, Cr, As, Zn, Cd, Cu, and Hg. Those metals are important since they are capable of decreasing crop production due to the risk of bioaccumulation and biomagnification in the food chain. There is also the risk of superficial and groundwater contamination. Knowledge of the basic chemistry, environmental, and associated health effects of these heavy metals is necessary in understanding their speciation, bioavailability, and remedial options. The fate and transport of a heavy metal in soil depends significantly on the chemical form and speciation of the metal. Once in the soil, heavy metals are adsorbed by initial fast reactions (minutes, hours), followed by slow adsorption reactions (days, years) and are, therefore, redistributed into different chemical forms with varying bioavailability, mobility, and toxicity (Shiowatana et al., 2001). This distribution is believed to be controlled by reactions of heavy metals in soils such as (i) mineral precipitation and dissolution, (ii) ion exchange, adsorption, and desorption, (iii) aqueous complexation, (iv) biological immobilization and mobilization, and (v) plant uptake (Levy et al., 1992). The toxicity of metals varies greatly with pH, water hardness, dissolved oxygen levels, salinity, temperature and other parameters.
The specific type of metal contamination found in a contaminated soil is related to the operation that occurred at the site. The range of contaminant concentrations and the physical and chemical forms of contaminants will also depend on activities and disposal patterns for contaminated wastes on the site. Other factors that may influence the form, concentration, and distribution of metal contaminants include soil and groundwater chemistry and local transport mechanisms.
Finally, in order to evaluate the impact of a chemical that has been released to the environment, the chemical must be characterized in terms of the transport and transformation in that system (atmosphere, water, or land) and the potential for the transport of the chemical from one system to another or from one system to the other two. The assessment should focus on areas with which a released chemical is most likely to have contact. For a meaningful characterization, the environment must be viewed as a series of interacting compartments and it must be determined whether a chemical will remain and accumulate in the local area of the origin of the chemical. The potential for the chemical to be physically, chemically, or biologically transformed in the system of its origin (such as by hydrolysis, oxidation, or other transformation; Chapter 8) or be transported to another system such as by volatilization or by precipitation. The chemical could also be transferred by deposition and runoff to surface water that provides drinking water.
Each of these scenarios defines a pathway from the air emission to contact with a person, and each pathway has an associated route of contact. The true potential for exposure cannot be quantified until the pathways and routes that account for a substantial fraction of the intake and uptake for the receptor population have been identified. The likelihood of any pathway depends on the chemical properties of the substance released, where and how it is released, and environmental conditions. Sometimes the exposure increases along a pathway (such as bioaccumulation), but more often the exposure may decrease.
Thus, characterizing transportation pathways begins at the source of the agent release. In some situations, the source may be obvious and can be defined and characterized from air or soil concentrations. In many cases, such as contamination of water supplies, sources and emissions may be multiple and poorly characterized. However, classification of a potential transportation route should, as much as possible, be based on the released volume, duration of the release, and the rate of emission.
In order to fully understand the impact of a released chemical on the environment, the potential for chemical transformation of the spilled chemical which may occur as a result of biotic or abiotic processes, can significantly reduce the concentration of a substance or alter its structure in such a way as to enhance or diminish its toxicity or change its toxic effect. For example, for many airborne organic compounds, transformation processes, such as photolytic decomposition and oxidation/reduction reactions, can result in conversion to other compounds. For organic chemicals, the half-life of the chemical for any given transformation process provides a useful index of persistence in environmental media. For example, the photochemical half-life can vary from day to night, and specific information on the rates and pathways of transformation for individual chemicals of concern must be obtained directly from experimental determinations or derived indirectly from information on chemicals that are structurally similar to the released chemical.
Despite these environmental impacts, renewable energy technologies compare extremely favorably to fossil fuels, and remain a core part of the solution to future energy requirements. Renewable energy is going to be an important source for power generation in the near future because the resources again and again produce useful energy. Wind power generation is considered as having lowest water consumption, lowest relative greenhouse gas emission, and most favorable social impacts. It is considered as one of the most sustainable renewable energy sources, followed by hydropower, photovoltaic, and then geothermal. As these resources are considered as clean energy resources, they can be helpful for the mitigation of greenhouse effect and global warming effect.
However, by understanding the components of the environment and the current and potential environmental issues associated with each renewable energy source, the reader can understand the means to effectively avoid or minimize these impacts as they become a larger portion of energy supply. For this reason, this encyclopedia is an all-inclusive work that also presents not only the environmental components but also the various environmental aspects of the generation and use of renewable energy. Other issues arise that are similar to those produced by the use of fossil fuels – contamination of the atmosphere, water, and the land – but the degree of the contamination is not the same.
However,