Глоссариум по информационным технологиям и искусственному интеллекту. Александр Чесалов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Александр Чесалов
Издательство: Издательские решения
Серия:
Жанр произведения: Компьютеры: прочее
Год издания: 0
isbn: 9785005589576
Скачать книгу
манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.

      Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.

      Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.

      Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования». Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат69,70,71,72,73.

      Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) (Microsoft Azure Machine Learning) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.

      Машинный разум (Machine intelligence) – это общий термин, охватывающий машинное обучение, глубокое обучение и классические алгоритмы обучения.

      Машины опорных векторов или сети опорных векторов (Support-vector machines, Support-vector networks) – это контролируемые модели обучения с соответствующими алгоритмами обучения, которые анализируют данные для классификации и регрессионного анализа. Разработаны в AT&T Bell Laboratories Владимиром Вапником с коллегами в 1992 году. Машины опорных


<p>69</p>

.Arthur Lee Samuel. [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Arthur_Samuel (дата обращения: 14.01.2022)

<p>70</p>

.Source of Arthur Samuel’s definition of machine learning. [Электронный ресурс] https://datascience.stackexchange.com URL: https://datascience.stackexchange.com/questions/37078/source-of-arthur-samuels-definition-of-machine-learning (дата обращения: 14.01.2022)

<p>71</p>

.Технологии искусственного интеллекта. [текст]. – Москва: Агентство промышленного развития Москвы, 2019.-155 с. [Электронный ресурс] https://apr.moscow URL: https://apr.moscow/analitics/promyshlennost-moskvy (дата обращения: 02.02.2022).

<p>72</p>

Машинное обучение [Электронный ресурс] https://digitalhealtheurope.eu URL: https://digitalhealtheurope.eu/glossary/machine-learning/ (дата обращения: 10.11.2022)

<p>73</p>

Machine learning [Электронный ресурс] www.ibm.com (дата обращения: 07.07.2022) URL:https://www.ibm.com/cloud/learn/machine-learning