Глубоко разделяемая сверточная нейронная сеть (Depthwise separable convolutional neural network) – это архитектура сверточной нейронной сети, основанная на Inception (раздел с данными на GitHub), но в которой модули Inception заменены свертками, отделяемыми по глубине. Также известен как Xception.
Глубокое обучение (Deep Learning) – это разновидность машинного обучения на основе искусственных нейронных сетей, а также глубокое (глубинное) структурированное или иерархическое машинное обучение, набор алгоритмов и методов машинного обучения (machine learning) на основе различных видов представления данных. Обучение может быть контролируемым, полу контролируемым (semi-supervised) или неконтролируемым. Использование в глубоком обучении рекуррентных нейронных сетей (recurrent neural networks), позволяет эффективно решать задачи в областях компьютерного зрения, распознавания речи, обработки текстов на естественном языке, машинного перевода, биоинформатики и др.
Государство-как-Платформа (State-as-Platform) – это концепция трансформации государственного управления с использованием возможностей, которые нам дают новые технологии. Целевой функцией реализации идеи «Государство-как-Платформа» является благополучие граждан и содействие экономическому росту, основанному на внедрении технологий. В фокусе развертывания Платформы находится гражданин в условиях новой цифровой реальности. Государство должно создать условия, которые помогут человеку раскрыть свои способности, и сформировать комфортную и безопасную среду для его жизни и реализации потенциала, а также для создания и внедрения инновационных технологий.
Графический кластер (Graphics cluster) – это доминирующий высокоуровневый блок, включающий все ключевые графические составляющие.
Графический процессор (computational Graphics Processing Unit, computational GPU) – это вычислитель, многоядерный ГП, используемый в гибридных суперкомпьютерах для выполнения параллельных математических вычислений; например, один из первых образцов ГП этой категории содержит более 3 млрд транзисторов – 512 ядер CUDA и память ёмкостью до 6 Гбайт.
Графовые нейронные сети (Graph neural networks) – это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети – это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов. GNN могут делать то, что не смогли сделать сверточные нейронные сети (CNN). Также под Графовыми нейронными сетями понимают нейронные модели, которые фиксируют зависимость графов посредством передачи сообщений между узлами графов. В последние годы варианты GNN, такие как сверточная сеть графа (GCN), сеть внимания