Объяснение термодинамики. Дмитрий Коротков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дмитрий Коротков
Издательство: Издательские решения
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9785005587657
Скачать книгу
общности теории можно принять следующее условие, упрощающее рассуждения: энергия по степеням свободы рассеивается равномерно. Для некоторых систем не обнаруживается равномерного рассеяния энергии по их «кинематическим» степеням свободы. Доля распределяемой энергии будет зависеть от характера движения в данной степени свободы. Но для таких систем можно формально принять некоторое другое количество степеней свободы, назвав их, например, «эффективные», по которым энергия будет считаться распределяемой равномерно. Это не повлияет на построение термодинамики, т.к. в ней принципиально не рассматриваются движения по отдельным степеням свободы.

      Пример: степени свободы молекул. Для двухатомной молекулы можно представить шесть «кинематических» степеней свободы: три поступательные (для общего движения молекулы в пространстве), две вращательные и одну колебательную. Последняя имеет в среднем двойную энергию относительно остальных степеней свободы: это кинетическая и потенциальная составляющие энергии. Для формального равенства распределения энергии по степеням свободы колебательную степень свободы нужно считать за две эффективных. Поэтому общее число эффективных степеней свободы двухатомной молекулы – семь. Из-за квантовых эффектов колебательная степень свободы возбуждается только при достаточно высоких температурах. В привычных нам температурных условиях двухатомные молекулы ведут себя как пяти-степенные системы.

      В дальнейшем, при упоминании степеней свободы слово «эффективная», как правило, будем опускать.

      Равновесное состояние рассеивающей системы – это состояние равенства средней по времени энергии у всех её (эффективных) степеней свободы. Это состояние ещё называют термодинамическое равновесие.

      В состоянии термодинамического равновесия для энергии примем эргодическую гипотезу: «среднее по времени равно среднему по ансамблю». По времени – для некоторой одной степени свободы, а «ансамбль» – это все степени свободы. Из определения видно, что в неравновесном состоянии эргодическая гипотеза может не выполняться.

      В общем определении термодинамического равновесия нет необходимости задавать равномерное распределение частиц по пространству. Положения в пространстве можно включить в понятие «степени свободы» (это будет показано далее в данной книге). Вообще необходимость рассмотрения пространственного расположения частиц не обязательна и зависит от решаемой задачи.

      Многие реальные системы частиц можно считать рассеивающими системами: не только газы, но в ряде задач также и жидкости, и твёрдые тела. Для систем частиц с сильными связями, степени свободы могут не вполне соответствовать движениям реальных частиц системы. В этом случае может использоваться понятие «квазичастицы». Их движения соответствует движениям связанных групп реальных частиц.

      Строгие необходимые и достаточные условия