Distributed Acoustic Sensing in Geophysics. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119521778
Скачать книгу
target="_blank" rel="nofollow" href="#ulink_71285571-0b3c-5610-a111-8e371d358ed0">Figure 4.5 Time domain and STFT spectrogram of sweeping frequency signal.

      We propose a real‐time DAS system based on PGC demodulation algorithm. Compared with the previous work (Fang et al., 2015), it brings a 15.6 dB improvement in phase noise. The average noise could reach ~5 × 10‐4 rad/√Hz, and the strain sensitivity is as small as 8.5 pε/√Hz for a 10 m spatial resolution. This PGC‐DAS system could measure the dynamic vibration signal from 2 Hz to 1 kHz over a 10 km long optical fiber, with a linear coefficient R2 of 0.99941 and a minimum spatial interval of 0.4 m. The near‐surface seismic experimental results show that DAS data are qualitatively similar to the signals observed on the geophones. These facts suggest that DAS technology provides a novel and highly valuable tool for geophysical science in a wider sense. Moreover, PGC‐DAS system has potential advantages in reducing size and power consumption due to simple structure and efficient phase demodulation algorithm, and a mini‐PGC‐DAS module is under development, with a size of 150 mm × 300 mm × 110 mm (width × depth × height) and a power consumption of 25 W, which could work at the bottom for submarine application.

image

      This work was funded by the National Natural Science Foundation of China (Grant Nos. 61875184 and 61775210), the National Key Research and Development Program of China (Grant No. 2017YFB0405500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDC02040500 and XDA22040105), and State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences (Grant No. SKLGED2019‐5‐4‐E).

      1 Alekseev, A. E., Vdovenko, V. S., Gorshkov, B. G., Potapov, V. T., & Sergachev, I. A. (2014a). A phase‐sensitive optical time‐domain reflectometer with dual‐pulse phase modulated probe signal. Laser Physics, 24(5).

      2 Alekseev, A. E., Vdovenko, V. S., Gorshkov, B. G., Potapov, V. T., & Sergachev, I. A. (2014b). Phase‐sensitive optical coherence reflectometer with differential phase‐shift keying of probe pulses. Quantum Electronics, 44(10), 965–969.

      3 Alekseev, A. E., Vdovenko, V. S., Gorshkov, B. G., Potapov, V. T., & Simikin, D. E. (2015). A phase‐sensitive optical time‐domain reflectometer with dual‐pulse diverse frequency probe signal. Laser Physics, 25(6), 065101.

      4 Bao, X., Zhou, D., Baker, C., & Chen L. (2017). Recent development in the distributed fiber optic acoustic and ultrasonic detection. Journal of Lightwave Technology, 35(16), 3256–3267.

      5 Dandridge, A., Tveten, A. B., & Giallorenzi, T. G. (1982). Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Journal of Quantum Electronics, 18(10), 1647–1653.

      6 Fang, G., Xu, T. W., Feng, S. W., & Li, F. (2015). Phase‐sensitive optical time domain reflectometer based on phase generated carrier algorithm. Journal of Lightwave Technology, 33(13), 2811–2816.

      7 Feng, S., Xu, T., Huang, J., Yang, Y., Ma, L., & Li, F. (2018). Sub‐meter spatial resolution phase‐sensitive optical time‐domain reflectometry system using double interferometers. Applied Sciences, 8(10), 1899.

      8 Hartog, A. (2017). An introduction to distributed optical fiber sensors. CRC Press, Taylor & Francis Group.

      9 He, X., Liu, F., Qin, M., Cao, S., Gu, L., Zheng, X., & Zhang, M. (2017). Phase‐sensitive optical time‐domain reflectometry with heterodyne demodulation. 2017 25th Optical Fiber Sensors Conference (OFS) (pp. 1–4).

      10 Huang, S., Lin, W., Chen M., Hung, S., & Chao, H. (1996). Crosstalk analysis and system design of time‐division multiplexing of polarization‐insensitive fiber optic Michelson interferometric sensors. Journal of Lightwave Technology, 14(6), 1488–1500.

      11 Juarez, J. C., Maier, E. W., Choi, K. N., & Taylor, H. F. (2005). Distributed fiber‐optic intrusion sensor system. Journal of Lightwave Technology, 23(6), 2081–2087.

      12 Lu, Y., Zhu, T., Chen, L., & Bao, X. (2010). Distributed vibration sensor based on coherent detection of phase‐OTDR. Journal of Lightwave Technology, 28(22), 3243–3249.

      13 Masoudi, A., Belal, M., & Newson, T. P. (2013). A distributed optical fibre dynamic strain sensor based on phase‐OTDR. Measurement Science and Technology, 24(8), 085204.

      14 Park, J., Lee, W., & Taylor, H. F. (1998). Fiber optic intrusion sensor with the configuration of an optical time‐domain