35 Martins, H. F., Martin‐Lopez, S., Corredera, P., Salgado, P., Frazão, O., & González‐Herráez, M. (2013). Modulation instability‐induced fading in phase‐sensitive optical time‐domain reflectometry. Optics Letters, 38(6), 872–874. doi: 10.1364/OL.38.000872
36 Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., et al. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692.
37 Miller, D. E., Daley, T. M., White, D., Freifeld, B. M., Robertson, M., Cocker, J., et al. (2016). Simultaneous acquisition of distributed acoustic sensing VSP with multi‐mode and single‐mode fibre‐optic cables and 3C‐geophones at the Aquistore CO2 storage site. CSEG Recorder, 41(6).
38 Matichard, F., Lantz, B., Mittleman, R., Mason, K., Kissel, J., Abbott, B., et al. (2015). Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Classical and Quantum Gravity, 32(18), 185003.
39 Parker, T. R., Farhadiroushan, M., Feced, R., Handerek, V. A., & Rogers, A. J. (1998). Simultaneous distributed measurement of strain and temperature from noise‐initiated Brillouin scattering in optical fibers. IEEE Journal of Quantum Electronics, 34(4), 645–659. doi: 10.1109/3.663443
40 Parker, T., Shatalin, S., & Farhadiroushan, M. (2014). Distributed acoustic sensing—a new tool for seismic applications. First Break, 32(2), 61–69. doi: 10.3997/1365‐2397.2013034
41 Peterson, J. R. (1993). Observations and modeling of seismic background noise (No. 93‐322). US Geological Survey.
42 Posey, R., Johnson, G. A., & Vohra, S. T. (2000). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36(20), 1688–1689. doi: 10.1049/el:20001200
43 Rathod, R., Pechstedt, R. D., Jackson, D. A., & Webb, D. J. (1994). Distributed temperature‐change sensor based on Rayleigh backscattering in an optical fiber. Optics Letters, 19(8), 593–595. doi: 10.1364/OL.19.000593
44 Ringler, A. T., & Hutt, C. R. (2010). Self‐noise models of seismic instruments. Seismological Research Letters, 81(6), 972–983.
45 Rea, N. P., Wilson, T., & Juškaitis, R. (1996). Semiconductor laser confocal and interference microscopy. Optics Communications, 125(1–3), 158–167. doi: 10.1016/0030‐4018(95)00701‐6
46 Richter, P., Parker, T., Woerpel, C., Wu, Y., Rufino, R., & Farhadiroushan, M. (2019). Hydraulic fracture monitoring and optimization in unconventional completions using a high resolution engineered fiber optic distributed acoustic sensor. First Break, 37(4), 66–68.
47 Servin, M., Kujawinska, M., & Padilla, J. M. (2017). Modern fringe pattern analysis in interferometry. In Advanced Optical Instruments and Techniques (pp. 101–152). CRC Press.
48 Shatalin, S. V., Treschikov, V. N., & Rogers, A. J. (1998). Interferometric optical time‐domain reflectometry for distributed optical‐fiber sensing. Applied Optics, 37(24), 5600–5604. doi: 10.1364/AO.37.005600
49 Shatalin, S., Mamedov, A., Potapov, V., & Sedykh, D. (1991). Optical frequency domain multiplexing of fiber‐optic sensors. The First International Soviet Fibre Optics Conference, ISFOC ′91 (pp. 307–308).
50 Subsea Fiber Optic Monitoring (SEAFOM) working group (2018). Measuring Sensor Performance—DAS Parameter Definitions and Tests SEAFOM‐MSP‐02. Retrieved from https://seafom.com/published‐documents/
51 Taylor, H. F., & Lee, C. E. (1993). U.S. Patent No. 5,194,847. Washington, DC: U.S. Patent and Trademark Office.
52 Todd, M. (2011, April). Noise propagation in a 3×3 optical demodulation scheme used for fiber Bragg grating interrogation. Paper presented in Smart Sensor Phenomena, Technology, Networks, and Systems 2011 (Vol. 7982, p. 79820A). International Society for Optics and Photonics. doi: 10.1117/12.878694
53 Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22–38. doi: 10.1117/12.467162
54 Wielandt, E., & Widmer‐Schnidrig, R. (2002). Seismic sensing and data acquisition in the GRSN. Ten Years of German Regional Seismic Network (GRSN) (pp. 73–83).
55 Westbrook, P. S., Feder, K. S., Ortiz, R. M., Kremp, T., Monberg, E. M., Wu, H., et al. (2017, April). Kilometer length, low loss enhanced back scattering fiber for distributed sensing. Paper presented in 2017 25th Optical Fiber Sensors Conference (OFS) (pp. 1–5). IEEE.
56 Wuestefeld, A., & Wilks, M. (2019). How to twist and turn a fiber: Performance modeling for optimal DAS acquisitions. The Leading Edge, 38(3), 226–231.
TABLE OF VARIABLES
a(z) | arbitrary function |
A 0 | fiber elongation corresponding to 1 rad of phase shift |
A(z, t) | output of DAS |
A1(z) | output of DAS with first order algorithm |
A2(z) | output of DAS with second order algorithm |
b(z) | arbitrary function |
c | optical speed of light in fiber |
C | speed of sound |
D | DAS dynamic range |
e(t′) | optical field of coherent input pulse |
E(t′) | optical field on photodetector |
ℑ(K, F) | Fourier transforms of seismic signal |
ℑ | Fourier transform symbol |
F | frequency of sound |
F MAX | maximum frequency of sound |
F S | pulse repetition rate or sampling frequency |
G(z) | geophone antenna response |
hυ | energy quant |
Im Z | imaginary part of interference output |
Ij (z, t) | intensity trace for different interferometric output |
I(z, t) | photodetector intensity trace |
j | integer number |
|