225 223
226 224
227 225
228 226
229 227
230 228
231 229
232 230
233 231
234 232
235 233
236 234
237 235
238 236
239 237
240 238
241 239
242 240
243 241
244 242
245 243
246 244
247 245
248 246
249 247
250 249
251 250
252 251
253 252
254 253
255 254
256 255
257 256
258 257
259 258
260 259
261 260
262 261
263 262
264 263
265 264
266 265
267 266
268 267
269 269
270 270
271 271
272 272
273 273
274 274
275 275
276 276
277 277
278 278
279 279
280 280
281 281
282 282
283 283
284 284
285 285
286 286
287 287
288 288
289 289
290 290
291 291
292 292
293 293
294 294
295 295
296 296
297 297
298 298
299 299
300 300
301 301
302 302
303 303
304 304
305 305
306 306
307 307
308 308
309 309
310 310
311 311
312 312
313 313
314 314
315 315
316 316
317 317
318 318
319 319
320 320
321 321
322 322
323 323
324 325
325 326
326 327
327 328
328 329
329 330
330 331
331 332
332 333
Scrivener Publishing 100 Cummings Center, Suite 541J Beverly MA, 01915-6106
Machine Learning in Biomedical Science and Healthcare Informatics
Series Editors: Vishal Jain and Jyotir Moy Chatterjee
In this series, the focus centers on the various applications of machine learning in the biomedical engineering and healthcare fields, with a special emphasis on the most representative learning techniques, namely deep learning-based approaches. Machine learning tasks typically classified into two broad categories depending on whether there is a learning “label” or “feedback” available to a learning system: supervised learning and unsupervised learning. This series also introduces various types of machine learning tasks in the biomedical engineering field from classification (supervised learning) to clustering (unsupervised learning). The objective of the series is to compile all aspects of biomedical science and healthcare informatics, from fundamental principles to current advanced concepts.
Submission to the series: Please send book proposals to [email protected] and/or [email protected]
Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected])
Semantic Web for Effective Healthcare
Edited