Искусственный интеллект в медицине. Как умные технологии меняют подход к лечению. Эрик Тополь. Читать онлайн. Newlib. NEWLIB.NET

Автор: Эрик Тополь
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Медицина
Год издания: 2019
isbn: 9785961474763
Скачать книгу
казалась способность искусственного интеллекта обеспечить многосторонний панорамный взгляд на медицинские данные пациента, улучшить качество принимаемых диагностических и лечебных решений, сократить количество ошибок в диагностике и ненужных исследований, помочь в назначении и интерпретации необходимых анализов и инструментальных исследований, рекомендовать лечение. В основе всего этого лежат данные. Мы уже давно вступили в эпоху больших данных; в настоящее время мир ежегодно производит зеттабайты данных (в каждом зеттабайте секстиллион (1021) байт – достаточно, чтобы заполнить память приблизительно 1 трлн смартфонов). В медицине к массивам больших данных можно отнести нуклеотидную последовательность полного генома, медицинские изображения высокого разрешения и показатели, постоянно считываемые и передаваемые датчиками, которые закреплены на теле пациента. Данные поступают и поступают в колоссальном объеме, однако мы способны обработать лишь ничтожную их долю. Считается, что в лучшем случае 5 %, не больше. Грубо говоря, у нас было что надеть, но некуда в этом пойти – до недавнего времени. Теперь искусственный интеллект обуздал необозримый конгломерат больших данных и заставил его работать.

      Существует множество разновидностей ИИ. Традиционно машинное обучение включает логистическую регрессию, байесовские сети, «метод случайного леса», метод опорных векторов, экспертные системы и множество других инструментов, разработанных для анализа данных. Например, байесовская сеть – это модель, позволяющая оценивать вероятности. Если у меня есть список симптомов, с которыми обратился больной, то такая модель позволяет получить список всех возможных диагнозов с указанием их относительной вероятности. Забавно, что в 1990-е, когда мы составляли деревья решений, чтобы собранные нами данные могли говорить сами за себя (система была рассчитана на «автоанализ», чтобы на выводы не влияли искажения при интерпретации), мы не называли это машинным обучением. Однако теперь этот статистический метод значительно усовершенствован, и к нему относятся с почтением. За последние годы инструментарий ИИ проник в такие важные сетевые модели, как глубокое обучение и стимулированное обучение, оно же обучение с подкреплением (мы подробнее обсудим эти вопросы в главе 4).

      Разновидность ИИ, отвечающего за глубокое обучение, приобрела особую значимость после 2012 г., когда была опубликована статья о распознавании образов[7], уже ставшая классической.

      Число новых алгоритмов глубокого обучения искусственного интеллекта и публикаций на эту тему возросло лавинообразно (см. рис. 1.1), причем рост способности машин распознавать закономерности в огромных наборах данных носил экспоненциальный характер. Увеличение в 300 тыс. раз вычислительной мощности компьютера в петафлопсах (петафлопс – скорость работы компьютера, равная выполнению квадриллиона (1015) операций с плавающей запятой в секунду) в течение суток обучения искусственного


<p>7</p>

Krizhevsky, A., I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” ACM Digital Library. 2012: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, pp. 1097–1105.