Как учится машина. Революция в области нейронных сетей и глубокого обучения. Ян Лекун. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ян Лекун
Издательство: Альпина Диджитал
Серия:
Жанр произведения: Техническая литература
Год издания: 2019
isbn: 9785907470552
Скачать книгу
данных по телефону или по коаксиальному кабелю.

      16

      Théories du langage, théories de l'apprentissage: le débat entre Jean Piaget et Noam Chomsky, d.bat recueilli par Maximo Piatelli-Palmarini, Centre Royaumont pour une science de l'homme, Seuil, Points, 1979.

      17

      Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis, p. 6.

      18

      См. главу 5 «Мой HLM!».

      19

      Машиной Больцмана называется один из видов нейронных сетей. – Прим. ред.

      20

      John J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences, 1982, 79 (8), p. 2554–2558, DOI:10.1073/pnas.79.8.2554.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wgARCAXCBAADAREAAhEBAxEB/8QAHAABAAICAwEAAAAAAAAAAAAAAAcIBQYBAgQD/8QAGQEBAAMBAQAAAAAAAAAAAAAAAAIDBAEF/9oADAMBAAIQAxAAAAHcPUuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGtQjrcYgDgkCyfq73ERjrMeb7ZMAfHiOa65Kts7AAAGi1w8HOAAfTqRrLODVoR12PAAPf1vlkxpVcMtLuflIDqRxVDaZ92CUtDrhsMu5uUgBhIxwEeb1ZPFxjqceSBZMAdCNqq5Hss+vQAAAAAAAAAAAAAAAAAAAAAAAAAAAAhuiquWavbbOgDR643Z3aNjlKMqoV9z1XP26ABjORolgz3436fR3oAAFOMefwRZKQDy8a/Hl8N+nqV1zVRLTXsM+gDZ5Ss5quFSsmeTLLJpvsHJXLNTHVcbi7L/Z3tcs1Pj4szquAFZMtOV6sNpujuqFas1V2d2gAebnKD4M18N2jIykAAAAAAAAAAAAAAAAAAAAAAAAAAABj+Rovgz3B2X7vZMAUH8/LdXdo2OUoyqhX3PVc/boAGM5GiWDPfjfp9HegAAU4x551vtlK2YGpwhT3HTfDfp6ldc1XncslpuAAAqVkzyZZZNN9gh2iuvWeq5O2/PSkNQhCn+Om8+7R6O9Hl5yjGHPcvZfs05R3VCtWaq7O7QAPNzlB8Ga+G7RkZSAAAAAAAAAAAAAAAAAAAAAAAAAAAA1yMaVYc9+PQ1AAUH8/LdXdo2OUoyqhX3PVc/boAGM5GiWDPfjfp9HegAAU4x551vtlK2YGpwhT3HTfDfp6ldc1XncslpuAAAqVkzyZZZNN9mhVwqZkptzru3eyYHJS7Fnni+yWLrBENNcM0V3F26OCO6oVqzVXZ3aAB5ucoPgzXw3aMjKQAAAAAAAAAAAAAAAAAAAAAAAAAAAGuxjSjDnvv6GrsACg/n5bq7tGxylGVUK+56rn7dAAxnI0SwZ78b9Po70AACnGPPOt9spWzA1OEKe46b4b9PUrrmq87lktNwAAFSsmeTLLJHtlTfFRZPTbK91gAEG56o7rjbbZfyVAx55btsmO+wR3VCtWaq7O7QAPNzlB8Ga+G7RkZSAAAAAAAAAAAAAAAAAAAAAAAAAAAA6cUrxZ5AslMd03QcU6x0XW3aNjlKMqoVuzU2J0WgDxc5WLNVfffp9HegAAU4x551vtlK2YGpwhT3HTfDfp6ldc1WpwjMN0wBtE+7bOYqVkz57stCrjK105/0W8AAGIjGj2HPd/do85S7DRebfo9neiO6oVey02Q02gD4lWstN792jIykAAAAAAAAAAAAAAAAAAAAAAAAAAAAMHGNZMtUdVwy/e+roa7Hl2t2jY5SjKqFW8tO7z6APkR/XG++/T6O9AAApxjzzrfbKVswNThCnuOm+G/T1K65qoopr2efQBK9tkx32CpWTPrkOYCPLj7b9wnMAACpeOjf7JePnMDzln9V4Ed1Qqfkp3qzoA6Ee1xvdu0ZGUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAI3qhV7LTdzdo93e8FB/Py3V3aNjlKMqoV9z1XP26ABjORolgz3436fR3oAAFOMeedb7ZStmBqcIU9x03w36epXXNV53LJabgAAKlZM8mWWcOQPnruTtvzMpAACKaa655qviWp13b/ZMCO6oVqzVXZ3aAB5ucoPgzXw3aMjKQAAAAAAAAAAAAAAAAAAAAAAAAAAAA6FLsOea75zTfaBQfz8t1d2jY5SjKqFfc9Vz9ugAYzkaJYM9+N+n0d6AABTjHnnW+2UrZganCFPcdN8N+nqV1zVedyyWm4AACpWTPJllk1X2Vry06RCNwdl/p70ADz85U/JTrcY3c3aQBHdUK1Zqrs7tAA83OUHwZr4btGRlIAAAAAAAAAAAAAAAAAAAAAAAAAAAAQxRVCFELp7dHfoCg/n5bq7tGxylGVUK+56rn7dAAxnI0SwZ78b9Po70AAfPik+LNZLTbJVtgGpwhT3HTfDfp6ldc1XncslpuAAAqVkzyZZZNN9nQqXjo9fVq9d/IABV/LTskuz5otAEd1QrVmquzu0ADzc5QfBmvhu0ZGUgAAAAAAAAAAAAAAAAAAAAAAAAAAAPFzlJMOezuq2S7bABQfz8t1d2jY5SjKqFfc9Vz9ugAYzkaJYM9+N+n0d6AOhHVUIWorwXOXG2X+jvQNThCnuOm+G/T1K65qtRhGX7pgDJdSPbYKlZM8mWWTTfYPDzlOcVEm2ysRpu4APDzlGsGe626/OykAI7qhWrNVdndoAHm5yg+DNfDdoyMpAAAAAAAAAAAAAAAAAAAAAAAAAAAARZTXHlcbL6ruAAVMyZ7NabszKWj1wiKmFldVwA8POVVyUWy13/bvQB5ucp/jo2qfbG6LclKQAwEY11zVWq138EO0VxbXWABsnZWQ1XCv2andrJSXbYBr0Y1sy02F027fOYEfVwjGqFkNN3AANOrhClNdnNV4A+HOVNyUWt13ezsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANejGvGangs5qu9vZckB56tShD2d7ZXTd9+9AxUY1rzU8kg2Tme+0AaZXCCqKvo7aTXeBXPNTg4xzMpWO03cgGnVwgiioWU03ZSUgI0qriKmv0O2d13wvRVoNcd9slNl9oFeM1Oux5LF05RtshOirQ64b7ZOa77R4ucrPlp6OS9dZJdtlWclHzAAALC6LdknIQvRVGNUPiDLd7O+izb5zA6kJ0VaPXHoADKd7ZbVdwAAAAAAAAAAAAAAAADToQppio6F692jKSlFdNdVstPBabVdLF1gAhWiqtuaoZrvbw79PIBGVVdUMlP06vxv1CEKKq5ZquS3my/f7JgD5cUdw5sVzlhdFs76LRyU1xZ9MhGX7rLO6rqvZaIkphLNs7R67wKaYs+nQjYPRbPOi2rmSiJqoS1bO0Wu8V9zUwLRWLG6bZwvtoNgy/PgAAC4uy/eLJ1vzUwhRX2AB6XbgbLtzsmKu5KIlqgAAM7Lt4N2ngAAAAAAAAAAAAAAAAGnQhTTFR0L17tHlKX4qPDzkyXWWZ1XcAHJTzFn0WER1Lg7L99smBGVVdUMlP06vxv1afCFOMVXyRn/RbPui0AAQBnpgLPXnZdu7u09jTa4Uzx0C5my/crJ1ey0RJTCWbZ2j13gU0xZ9OhGwei2edFtXMlETVQlq2dotd+IjGkeGjzOCxum2cL7a85quh1IMoq5JUtnsEpCa75+DnKW4qOxKFs93nIRBTDV4x2ycrobdGqwjSvFnEu2zzMpDUIRjquGdl28G7TwAAAAAAAAAAAAAAAADToQppio6F59+iqWOnSIR2ycrkbL/R3oAwUY0gw5x6nfK5M91lldVwEZVV1QyU/Tq9m7TTPFRrcYyDZO3Oy/sAADERjR7Dn+Za/XdJttlZMtMPU17tOVx9ujgq9loiSmEs2ztHrvAppiz6dCNg9Fs86LauZKImqhLVs7Ra761ZaYYprAsbptm++0D58UGwZeS22y+RrJgR5VCo2SjqX436vt0NchGL6oSRbLa5z0OuFP8AHR1L679Pp70QzRXWnNTnZdvBu08AAAAAAAAAAAAAAAAA06EKaYqOhL1s4kqh6nbmbb9mnIACC89Vd89WT72b77K+56sn3t5t+nuCMqq6oZKe/UpWTiqqGW725+2/LykAAAKuZKImqhItk7Ua7aNYKPO5aHVdLd1gq/loiOmEh2TtnruApzjo0+EbB6LZ50W1cyURNVCWrZz7otpXiz9ACxum2b77QPnxQbBl5LbbL5GsmBHlUKjZKOpfvfq79AADRK4U+x0dS7W3RnpdEOUwrZmpzsu3g3aeAAAAAAAAAAAAAAAAAadCFNMVAAsvpumW+wADkpjiz6hCM0XWTvospBhzi22u+RrZiMqq6oZKQOpbXXfJNswAAANKrhTbHR2JrushSmvKd7eLdp+3QhmiqtOaocAHILB6LZ50W1cyURNVCW7Z+Yi2qGxS7ya5HljdNs332gfPig2DLyW22XyNZMCPKoVGyUdS/e/V36AAGP5GkGGjxc51OQDkzsu3g3aeAAAAAAAAAAAAAAAAAadCFNMVHU9Tvnckqydstl4AGswjSfFnFw9l++WTp9jz6HXGXrrLParhGVVdUMlI+6XwRmS6yzOq7gAAAHJTjFn0mEQJ4vssJpuAFcM1MI0V8gAFg9Fs86LauZKImqhtEpatGPBazVdX2ivV4Rsbptm++0D58UGwZeS22y+RrJgR5VCo2SjqX736u/QAAGhVwqlkpxvOAAZ2XbwbtPAAAAAAAAAAAAAAAAANOhCmmKjoWh1XVgy08ljNNs4X2gCAc9UA56h6O9Hy5zoe3vb07tP26jKquqGSn6dWU0XVlzU8lqNV0q3WAAAARPTXVvLSOxd7dozkpADkw8Y4nnOAVZyVavGNg9Fs86LauZKImqgBvE5XE26KV4s+rwjY3TbN99oHz4oNgy8lttl8jWTAjyqFRslHUv3v1d+gAABT/Fn0OEZGsnYjTZFlUIEz152XbwbtPAAAAAAAAAAAAAAAAANOhCmmKjoXr3aIEorhKiv6Fxdl+52THJSjDn1mMQAALW67pPtsjKquqGSn6dX436qqZKIuqh7e9uftv2CUgAAB8+KTYs2AjyULZ2s13gAAACmmLPp0I2D0Wzzotq5koiaqA4Li7L94snSvFn1eEbG6bZvvtA+fFBsGXkttsvkayYEe1QqLko4L07tGUlIRrVXClEN/slOui3kjKqup2SnsXN237fOcM0V1pzU52XbwbtPAAAAAAAAAAAAAAAAANOhCmmKjoXr3aPd2VNsefUoR2KXbm7b/AG9lp8IUxxUCy+m3aZyArlmq06EZVtnafXfGVVdUMlP06vxv1Y/kaX4qMHHm6TlcTZo+nQAAGDjGkOHP8y3uy+QbJgAAACmmLPp0I2D0Wzzotq5koiaqAlO2dqtd/BSvFn1eEbG6bZvvtA+fFBsGXkttsvkayYGIjGkOGj4OZyXdjl0aTXzzOSlbO1eu/wCZS3Dn1iMZWtnafXfwQzRXWnNTnZdvBu08AAAAAAAAAAAAAAAAA06EKaYqOhevdoykpavCNM8VHncli2dpdd9ds1MF0V5jvbxb9PYAhGiquOar0O3q36I8rhVDJT9Or8b9Q0OuFQMdHBOd9lidNwAAFfM1MDUV7PKV1d2gAAAACmmLPp0I2D0Wzzotq5koiaqH0Lq7dGxzkKV4s+rwjY3TbN99oHz4oNgy8lttl8jWTAEYVV1XyU/IAG1ylb/ZdkpShuius+ansXV26NlnIQzRXWnNTnZdvBu08AAAAAAAAAAAAAAAAAx3IxvXFxKVs/v3o0euGvc44k22ejVxxbme73e7JgDG8jHFcRIk5fE0GEe3Er3WAR9VDDuc8SpbZ9OgABHFUMa5tEu7jOYAAAAEcVQxrm3yltU5aNXDX+cy7shWzAjWqvwG5Sls85AcET01upBnLMSkABrMIxzXH5cDLSSnbP0d6I7qhinMo7ItswNbhHSox9ZJ9tnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANKrhi+c93e73ZMAa3COtRjwSRbZ2ABotcPBznu73e7JgDkjeqvobjOWZlLSq4YrnNhl3aZz1uEdZjHId7vVk8PGOnQj36keyzgGoQhhY8yXe7vZPDxjp0I/TqRrLOAa/GOrQj6+936yYA4I3qrGel3a5zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRcWePYR7F1tujZJyApjiz6jCPUvvv1ffoDx85RXBR8UfqXo36Pf2QHYoTgzefnLTarpWusqVkzxxVGbr7LHaboDz1V/z1bnZK5OzRFlUKrZKPV2V89+jgx/I0iw0eDnN9nK3+3RFVVdWMlPr7K+e/R1BCFFVcs1WzSldbdoAGiVwp5jo7G2TldHbo4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi4s8ewiJeunZ7VeIzqrqbkp7HUvvv1ffoCIqa6wZaQLOarpgusA7FCcGbz85abVdK11lSsmeOKozdfZY7TdAeeqv8Anq3OyVydmiLKoVWyUersr579HBXfNTBdFY32crf7dEVVV1YyU+vsr579HUEIUVVyzVbNKV1t2gAVsy0wtTWOpdTbo2qcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKi4s8ewiOxdndo2GUqcYs+lQiOpfffq+/QFSsdEcVwAkSyduNl4HYoTgzefnLTarpWusqVkzxxVGbr7LHaboDz1V/wA9W52SuTs0RZVCq2Sj1dlfPfowcY0lw0fBwb7OVv8AboiqqurGSn19lfPfo6ghCiquWarZpSutu0AdCjWDNi+cAnq+2wWm0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACouLPHsIgTDdZK9s6i5KOwOpfffq+/QxkY0Zw5+hKls4rqh2Ly7tGVlIdihODN5+ctNqula6ypWTPHFUZuvssdpugPPVX/PVudkrk7NEWVQqtko9XZXz36KxZaYfprA32crf7dEVVV1YyU+vvb6b9PAIPoqrjmq2aUrrbtAEdVQqRko4JUtnFlUNjl27O7SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUXFnj2Ed