Computational Intelligence and Healthcare Informatics. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Программы
Год издания: 0
isbn: 9781119818694
Скачать книгу
Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, ICLR 2015, 1–14, 2014.

      61. Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R., Ibragimov, B., Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput. Electr. Eng., 78, 388–399, 2019.

      62. Soldati, G., Smargiassi, A., Inchingolo, R., Buonsenso, D., Perrone, T., Briganti, D.F., Tursi, F., Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J. Ultrasound Med., 10, 39, 7, 1413–1419, 2020.

      63. Suk, H.I., Lee, S.W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582, 2014.

      64. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., Inception-v4, inception-resnet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2016.

      65. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

      66. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

      67. Tang, Y.X., Tang, Y.B., Peng, Y., Yan, K., Bagheri, M., Redd, B.A., Summers, R.M., Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digital Med., 3, 1, 1–8, 2020.

      68. Vajda, S., Karargyris, A., Jaeger, S., Santosh, K.C., Candemir, S., Xue, Z., Thoma, G., Feature selection for automatic tuberculosis screening in frontal chest radiographs. J. Med. Syst., 42, 8, 146, 2018.

      69. Wang, H. and Xia, Y., Chestnet: A deep neural network for classification of thoracic diseases on chest radiography. arXiv preprint arXiv:1807.03058, 1–8, 2018.

      70. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M., Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2097–2106, 2017.

      71. Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., Lyman, K., Learning to diagnose from scratch by exploiting dependencies among labels. arXiv preprint arXiv:1710.10501, 1–12, 2017.

      72. Zech, J.R., Badgeley, M.A., Liu, M., Costa, A.B., Titano, J.J., Oermann, E.K., Confounding variables can degrade generalization performance of radiological deep learning models. arXiv preprint arXiv:1807.00431, 1–15, 2018.

      73. Zhang, R., Making convolutional networks shift-invariant again. arXiv preprint arXiv:1904. 11486, In International Conference on Machine Learning, pp. 7324–7334, PMLR, 1–11, 2019.

      74. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V., Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697–8710, 2018.

      1 *Corresponding author: wajgi.rakhi@gmail.com

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SeuUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAq+L ADhCSU0EJQAAAAAAEDMc1a/wROMgrS8y5yAmDhg4QklNBC8AAAAAAEpDAAEAWAIAAFgCAAAAAAAA AAAAADIZAABWEwAAtf///7X///99GQAAoRMAAAABKAUAAPwDAAABAA8nAQBGAGkAbABlAHMAAAAA ADhCSU0D7QAAAAAAEAEsAAAAAQABASwAAAABAAE4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhC SU0EDQAAAAAABAAAAII4QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0E CgAAAAAAAQAAOEJJTScQAAAAAAAKAAEAAAAAAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAA AAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAA AThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////////////////// //////////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////// /////////wPoAAA4QklNBAgAAAAAADgAAAABAAACQAAAAkAAAAAIAAAAAAEAAYAAAQAADYAAAAAA AAAAAWxAAQAA8WkAAAEW4AAAAP9gADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA08AAAAGAAAA AAAAAAAAAAwAAAAH+wAAAA0AOQA3ADgAMQAxADEAOQA4ADEAOAA2ADgANwAAAAEAAAAAAAAAAAAA AAAAAAAAAAAAAQAAAAAAAAAAAAAH+wAADAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAA AAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQA AAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb2