Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.
Моим родителям,
Александру и Елене Еременко,
которые научили меня самому важному в жизни – быть хорошим человеком
Бонус для читателей
Спасибо, что выбрали эту книгу. Вы сделали огромный шаг на пути в науку о данных.
Получите бесплатный доступ к моему курсу A-Z Data Science. Просто зайдите на сайт www.superdatascience.com/bookbonus и используйте пароль datarockstar.
Удачи в анализе данных!
Введение
«Наверное, вы всегда хотели стать аналитиком данных – с самого детства?»
Мне приятно, что меня об этом спрашивают. Да, я люблю свою работу. Я с большим удовольствием обучаю студентов основам науки о данных. И здорово, что люди, похоже, думают, что энтузиазм по отношению к данному предмету возник во мне еще в молодом возрасте. Но это абсолютно не соответствует действительности. Скажем честно, ни один ребенок не мечтает о том, чтобы стать ученым – аналитиком данных. Дети хотят быть космонавтами. Танцорами. Врачами. Пожарными. И если вы грезите о спасении жизней или о полетах в космическом пространстве, вы вряд ли остановите свой выбор на столь приземленном занятии.
Когда люди спрашивают меня, всегда ли я хотел построить карьеру в области науки о данных, я возвращаюсь к своему детству и вижу маленького русского мальчика, выросшего в Зимбабве. Запах тлеющих углей, брачные вопли африканских красных жаб, незабываемый уют зимнего вечера, кончики пальцев, переворачивающие страницу за страницей сборника историй для детей, – это фрагменты воспоминаний о множестве прекрасных вечеров, когда я слушал русские сказки, которые читала мне мама.
Моя мать хотела, чтобы я, мои братья и сестры любили Зимбабве, но она также заботилась о том, чтобы мы знали свои культурные корни. Она подумала, как наилучшим образом передать нам эту информацию, и решила, что самый действенный способ – сказки. Когда я в конце концов вернулся в Москву – в город, который едва помнил, – то почувствовал, что возвращаюсь домой, благодаря крупицам информации о России, вплетенным в затейливые сюжеты.
Такова сила повествования. И все множество услышанных сказок я хотел разбить на составляющие их компоненты. Мне нужно было увидеть большую картину, но я хотел видеть ее сквозь призму маленьких деталей. Я был очарован каждой частью механизма, создающего что-то настолько прекрасное. Я интуитивно знал: для того чтобы самому рассказать хорошую историю, сначала нужно собрать эти маленькие единицы информации. Именно так сформировалось мое отношение к данным.
В сегодняшнюю цифровую эпоху данные используются для создания историй о том, кто мы такие, как мы себя представляем, что нам нравится и когда мы хотим чего-то. Для того, чтобы проложить тропинку с уникальными виртуальными следами. Машины теперь знают о нас больше, чем мы сами, благодаря всем доступным им данным. Они читают наши личные данные как сборник рассказов о нас. И в науке о данных замечательно то, что любая дисциплина сегодня записывает свои данные, а это значит, что, освоив профессию аналитика данных, мы также можем стать космонавтами, танцорами и врачами, о чем так сильно мечтали.
Мало кто знает, что работать с данными в конечном итоге означает быть рассказчиком, передающим информацию. Так же, как и структурные компоненты историй, проекты по анализу и обработке данных тоже организованы логически. В книге «Работа с данными в любой сфере» четко выделяются пять этапов, которые составляют то, что я называю процессом обработки и анализа данных. Это не единственный подход, который можно использовать, но он обеспечит нашему проекту связь с практикой и продвижение к логическому завершению. И он четко и ясно структурирован, что мне так нравилось в детстве.
И вот я решил рассказать историю данных…
Но я абсолютный новичок
Наука о данных фактически является одной из тех областей, которые извлекают выгоду из опыта других сфер. Я надеюсь, что многие мои читатели уже весьма преуспели в той или иной профессии. Хорошо. Вы ничего не потеряете, если обратитесь к науке о данных, работая в другой области. Отнюдь не вредно для начала разбираться в чем-то еще. Это своего