Аналитическая культура. От сбора данных до бизнес-результатов. Карл Андерсон. Читать онлайн. Newlib. NEWLIB.NET

Автор: Карл Андерсон
Издательство: Манн, Иванов и Фербер
Серия:
Жанр произведения: Ценные бумаги, инвестиции
Год издания: 2015
isbn: 978-5-00100-781-4
Скачать книгу
ell the same.

      © Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017

* * *

      Введение

      Краткий обзор

      Эта книга посвящена двум основным вопросам:

      1) что означает для компании управление на основе данных?

      2) как компания может к нему прийти?

      Многие компании считают, что, если они генерируют множество отчетов или у них много дашбордов, значит, они относятся к категории компаний с управлением на основе данных. Хотя эти виды деятельности и составляют часть того, чем занимается компания, обычно они ретроспективны, то есть часто лишь представляют прошлые или настоящие факты без обеспечения достаточного контекста, без объяснения причинно-следственных связей, а также без рекомендаций, какие шаги предпринять. Иными словами, они фиксируют произошедшее, но ничего не предписывают. В этом отношении их потенциал роста ограничен.

      В противовес следует рассматривать типы перспективного анализа, такие как прогнозные модели, которые способствуют оптимизации расходов на рекламу, пополнению цепочки поставок или снижению оттока покупателей. Они отвечают на вопросы «кто», «что», «когда», «почему» и «где». На основе моделей люди дают рекомендации, делают прогнозы и интерпретируют полученные данные. Часто они становятся ключевыми факторами роста в организациях с управлением на основе данных. Сформулированные на основе данных выводы и рекомендации, если их правильно использовать, оказывают огромное потенциальное влияние на эффективность деятельности компании.

      Однако для получения подобных выводов требуется, чтобы были собраны правильные, заслуживающие доверия данные, анализ был проведен качественно, выводы учитывались при принятии решений, а решения подразумевали конкретные действия, чтобы потенциал был полностью реализован. Уф! Я называю эту последовательность от сбора данных до конечного результата аналитической цепочкой ценности.

      Последний шаг в этой цепочке чрезвычайно важен. Аналитику нельзя считать основанной на данных, если полученная информация не учитывается при принятии решений и не вызывает последующих действий. Если данные игнорируются, а большой босс делает что пожелает, сбор этих данных не имеет смысла. Управление на основе данных осуществляется в компании при наличии правильных процессов и корпоративной культуры, чтобы дорабатывать или стимулировать важные деловые решения с учетом проведенного анализа данных, который таким образом оказывает непосредственное влияние на развитие бизнеса.

      Ключевую роль играет создание соответствующей корпоративной культуры. Это многосторонняя программа, включающая качество данных и обмен информацией, прием на работу и обучение аналитиков, коммуникацию, аналитическую организационную структуру, разработку показателей, A/B-тестирование[1], процессы принятия решений и многое другое. Эта книга поможет пролить свет на все эти понятия благодаря доступным объяснениям и наглядным примерам из целого ряда производственных отраслей. Кроме того, здесь приводятся практические советы и рекомендации от лидеров в области анализа и обработки данных. Надеюсь, эта книга вдохновит читателей на то, чтобы переориентировать свою деятельность и начать руководствоваться данными.

      Более того, на протяжении всей книги подчеркивается важная роль, которая отводится самым разным специалистам в области обработки и анализа данных. Я убежден, что компанию с управлением на основе данных и соответствующую корпоративную культуру можно и нужно развивать не только сверху вниз – от руководства на места, – но и снизу вверх. Как отметил на форуме 2014 года Chief Data Officer Executive Forum руководитель направления по анализу и обработке данных компании Trulia Тодд Холлоуэй, «лучшие идеи подают сотрудники, наиболее тесно работающие с данными». Они не только напрямую имеют дело с источниками данных и способны оценить их качество и повлиять на него, не только понимают, как лучше всего их дополнить, но также «часто подают хорошие идеи по поводу товаров». Кроме того, они могут помочь повысить уровень знаний других сотрудников компании в этой области. Частично это происходит благодаря тому, что они развивают свои навыки и активно применяют их для качественного выполнения работы. Другая причина в том, что у них лучше развито предпринимательское мышление: они умеют задавать правильные вопросы и формулировать бизнес-проблемы, а затем убеждать в своих выводах и рекомендациях тех, от кого зависит принятие решения, предлагая им веское обоснование, какое влияние на бизнес способны оказать эти выводы и рекомендации.

      А влияние и выгоды могут быть весьма заметными. Согласно результатам одного из отчетов[2], в котором контролировались и другие факторы, в компаниях с управлением на основе данных производительность была на 5–6 % выше, чем в тех, что не практикуют подобное управление. К тому же в компаниях первой категории были выше показатель использования ресурсов, коэффициент рентабельности капитала и рыночная стоимость. Согласно данным другого отчета[3], возврат на каждый вложенный в проведение аналитики 1 долл. составляет


<p>1</p>

Метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей были изменены, для того чтобы выяснить, какие из изменений улучшаю целевой показатель. Прим. ред.

<p>2</p>

Brynjolfsson E., Hitt L. M. and Kim H. H. Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? Social Science Research Network (2011). URL: http://ebusiness.mit.edu/research/papers/2011.12_Brynjolfsson_Hitt_Kim_Strength in Numbers_302.pdf.

<p>3</p>

Nucleus Research. Analytics pays back $13.01 for every dollar spent. O204 (Boston, MA: Nucleus Research, 2014), 5. URL: http://nucleusresearch.com/research/single/analytics-pays-back-13-01-for-every-dollar-spent/.