Усиленное обучение. Джеймс Девис. Читать онлайн. Newlib. NEWLIB.NET

Автор: Джеймс Девис
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2024
isbn:
Скачать книгу
p>В отличие от других типов машинного обучения, таких как супервизированное и неуправляемое обучение, RL предполагает наличие постоянного взаимодействия агента с динамической средой. В супервизированном обучении модели обучаются на размеченных данных, где каждому входу соответствует определенный выход, и цель заключается в минимизации ошибки предсказаний на тестовых данных. В неуправляемом обучении модели работают с неразмеченными данными, стараясь выявить скрытые структуры или закономерности. В RL же агент должен самостоятельно исследовать среду и принимать решения, основываясь на полученных наградах, что добавляет уровень сложности, связанный с необходимостью учета временной зависимости и стратегического планирования.

      Одной из ключевых особенностей RL является механизм вознаграждений, который формирует обратную связь для агента. В отличие от супервизированного обучения, где обратная связь мгновенная и конкретная, в RL награды могут быть отложенными, и агент должен научиться принимать действия, основываясь на их долгосрочных последствиях. Это делает RL мощным инструментом для задач, где необходимо принимать последовательные решения в условиях неопределенности, таких как управление роботами, игра в сложные игры, управление ресурсами и оптимизация процессов.

      Примером применения RL является обучение роботов для выполнения сложных задач, таких как навигация в неизвестной среде или манипуляция объектами. Роботы могут начинать с базовых действий и постепенно улучшать свои стратегии на основе полученных вознаграждений за успешное выполнение заданий. Другим примером является применение RL в играх, где агент учится играть на высоком уровне путем взаимодействия с игровым окружением и получения наград за успешные действия. Например, знаменитая система AlphaGo от DeepMind использовала RL для обучения игры в го, что позволило ей победить чемпиона мира в этой сложной игре.

      Таким образом, усиленное обучение представляет собой метод машинного обучения, способный решать широкий спектр задач, требующих активного взаимодействия с окружающей средой и принятия последовательных решений. Его способность учитывать долгосрочные последствия действий и адаптироваться к изменениям в среде делает его незаменимым инструментом для разработки интеллектуальных систем, способных автономно обучаться и совершенствоваться.

Основные компоненты усиленного обучения включают:

      Агент – это субъект, который принимает решения и выполняет действия в среде. Агент может быть роботом, программой или любой системой, которая взаимодействует с окружающей средой. Основная задача агента заключается в том, чтобы научиться выбирать такие действия, которые максимизируют суммарное вознаграждение в долгосрочной перспективе. В процессе обучения агент адаптирует свои действия на основе опыта и обратной связи, получаемой из среды.

      Среда – это все, что окружает агента и с чем он взаимодействует. Она включает в себя все возможные состояния, события и правила, определяющие, как изменения происходят в результате действий агента. Среда может быть статической или динамической, детерминированной или стохастической. В контексте игр среда представляет собой игровое поле и правила игры; в робототехнике – физический мир и его законы. Среда предоставляет агенту информацию о текущем состоянии и награды за выполненные действия.

      Состояния описывают текущее положение агента в среде. Состояние может содержать различную информацию в зависимости от конкретной задачи: позицию агента, положение объектов, исторические данные и другие релевантные параметры. Состояния представляют собой важную часть информации, которую агент использует для принятия решений. Например, в игре шахматы состояние включает текущее расположение всех фигур на доске.

      Действия – это возможные операции, которые агент может совершить в текущем состоянии. Набор возможных действий может быть дискретным или непрерывным. В игре, например, действия могут включать перемещение фигуры на новую позицию, а в управлении ресурсами – распределение ресурсов между различными задачами. Каждое действие агента вызывает изменение состояния среды и ведет к получению награды.

      Награды – это обратная связь, которую агент получает после выполнения действия. Награды могут быть положительными или отрицательными и служат сигналами о том, насколько успешно выполнено действие с точки зрения цели обучения. Например, в игре награда может быть очками за успешное выполнение задания, а в робототехнике – положительная оценка за достижение цели и отрицательная за столкновение с препятствием. Награды помогают агенту обучаться и корректировать свои действия, стремясь максимизировать суммарное вознаграждение.

      Политика – это стратегия, определяющая выбор действий агента в каждом состоянии. Политика может быть детерминированной, когда одно и то же состояние всегда приводит к одному и тому же действию, или стохастической, когда действия выбираются с определенной вероятностью. Политика является центральным компонентом процесса обучения, так как именно она определяет поведение агента в любой ситуации. Оптимальная политика максимизирует ожидаемую суммарную награду агента в долгосрочной перспективе.

      Взаимодействие этих