Очерки межпланетной экономики. Дмитрий Николаевич Верхотуров. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дмитрий Николаевич Верхотуров
Издательство: Автор
Серия:
Жанр произведения:
Год издания: 2023
isbn:
Скачать книгу
производить в космосе?

      Что можно вынести за пределы Земли из частей космического аппарата? В первую очередь, это корпус и различные металлические детали. В космонавтике наиболее активно используется высокопрочный алюминиевый сплав В95, в состав которого входит 8 элементов. Однако, выплавка на орбите металла из сырья, доставленного с Земли – это явно неудачная мысль, поскольку тогда возможности орбитальной промышленности будут жестко лимитироваться возможностями вывода грузов на орбиту. Следовательно, нужно искать сырье за пределами Земли.

      Первый космический объект, на котором есть сырье для производства сплавов – это Луна. Лунный грунт весьма богат металлами, в частности, содержит в себе около 10% алюминия. Вообще, в лунном грунте содержится почти все необходимое для приготовления сплава В95, за исключением меди и цинка. Впрочем, это небольшая проблема, поскольку возможно подобрать сплавы со свойствами, подходящими для условий космоса (ведь им не требуется выдерживать нагрузки при старте с Земли), полностью подходящие к характеру лунного сырья.

      Добыча сырья с Луны возможна автоматическими аппаратами. Советская АМС «Луна-16» в 1970 году успешно доказала эту принципиальную возможность, взяв образец массой 100 гр. и доставив его на Землю. Аппараты могут доставлять сырье с поверхности Луны в специальный грузовик на орбите Луны или непосредственно на орбитальный завод.

      Источник энергии – это излучение Солнца, которое используется в различного вида отражательных печах, первые образцы которых были испытаны на станции «Мир», а также для получения электроэнергии для питания различных установок и оборудования.

      Безусловно, что создание работоспособного орбитального производства на основе энергии Солнца и лунного сырья потребует огромной работы, многочисленных экспериментов и опытов, прежде чем будет достигнут удовлетворительный результат. Но в том, что такой результат может быть достигнут, нет никаких сомнений.

      Мы взяли только один пример. Но можно быть уверенным, что при детальной разработке вопроса и по мере накопления опыта производства в космосе список материалов и изделий будет очень сильно расширен. Не исключено, что в дальней перспективе степень «локализации» производства космических аппаратов в космосе достигнет весьма большой доли.

      Создание различных искусственных объектов в космосе, которым не придется совершать старт с Земли с неизбежными нагрузками, потребует весьма радикального отрешения от земных инженерных традиций, которые приспособлены к земному тяготению и давлению воздуха. Потому и расходы материалов на строительство корпусов орбитальных станций в космосе будут существенно отличаться от современных орбитальных станций. Сейчас нелегко предсказать, какие именно изменения произойдут в конструировании космической техники, если появится реальная возможность сборки космического аппарата или корабля в космосе, но что они произойдут, в этом также нет никаких сомнений.

      Экономические