Предварительная оценка прагматической ценности информации в задаче классификации на основе глубоких нейронных сетей - В. П. Мешалкин
Автор: | В. П. Мешалкин |
Издательство: | Синергия |
Серия: | Прикладная информатика. Научные статьи |
Жанр произведения: | Техническая литература |
Год издания: | 2021 |
isbn: |
Предложен метод предварительной оценки прагматической ценности информации в задаче классификации состояния объекта на основе глубоких рекуррентных сетей долгой краткосрочной памяти. Цель проводимого исследования состояла в разработке метода прогноза состояния контролируемого объекта при минимизации количества используемых прогностических параметров, достигаемой с помощью предварительной оценки прагматической ценности информации. Это особенно актуальная задача в условиях обработки больших данных, характеризуемых не только значительными объемами поступающей информации, но и скоростью ее поступления и полиформатностью. Генерация больших данных сейчас происходит практически во всех сферах деятельности, что обусловлено широким внедрением в них Интернета вещей. Метод реализуется двухуровневой схемой обработки входной информации: на первом уровне применяется алгоритм машинного обучения «случайный лес», который имеет значительно меньшее количество настраиваемых параметров, чем рекуррентная нейронная сеть, используемая на втором уровне для окончательной и более точной классификации состояния контролируемого объекта или процесса. Выбор «случайного леса» обусловлен его способностью к оценке важности переменных в задачах регрессии и классификации. Это используется при определении прагматической ценности входной информации на первом уровне схемы обработки данных. Для этого выбирается параметр, который отражает указанную ценность в каком-либо смысле, и на основе ранжирования входных переменных по уровню важности осуществляется их отбор для формирования обучающих наборов данных для рекуррентной сети. Алгоритм предложенного метода обработки данных с предварительной оценкой прагматической ценности информации реализован в программе на языке MatLAB и показал свою работоспособность в эксперименте на модельных данных.