Байесовский анализ, когда оцениваемый параметр является случайным нормальным процессом - Л. Н. Слуцкин
Автор: | Л. Н. Слуцкин |
Издательство: | НОУ «МФПУ «Синергия» |
Серия: | Прикладная эконометрика. Научные статьи |
Жанр произведения: | Математика |
Год издания: | 2010 |
isbn: |
Рассмотрена задача байесовского оценивания последовательности неизвестных средних значений θ1,θ2,…,θk,… по имеющимся наблюдениям X1,X2,…,Xk,… в ситуации, когда наблюдения X1,X2,…, Xk подчиняются многомерному нормальному распределению с вектором средних (θ1,θ2,…,θk) и известной ковариационной матрицей. Предполагается, что параметры θ1,θ2,…,θk,… образуют гауссовский процесс. Доказывается сходимость (при k→∞) ковариационных матриц частного апостериорного распределения последовательности параметров; подробно анализируется пример, в котором размерность наблюдений X1,X2,…,Xk,… полагается равной единице, а последовательность θ1,θ2,…,θk,… образует гауссовский процесс авторегрессии первого порядка.