Differential Evolution. Fundamentals and Applications in Electrical Engineering - Anyong Qing
Автор: | Anyong Qing |
Издательство: | John Wiley & Sons Limited |
Серия: | |
Жанр произведения: | Программирование |
Год издания: | 0 |
isbn: | 9780470823934 |
Differential evolution is a very simple but very powerful stochastic optimizer. Since its inception, it has proved very efficient and robust in function optimization and has been applied to solve problems in many scientific and engineering fields. In Differential Evolution , Dr. Qing begins with an overview of optimization, followed by a state-of-the-art review of differential evolution, including its fundamentals and up-to-date advances. He goes on to explore the relationship between differential evolution strategies, intrinsic control parameters, non-intrinsic control parameters, and problem features through a parametric study. Findings and recommendations on the selection of strategies and intrinsic control parameter values are presented. Lastly, after an introductory review of reported applications in electrical and electronic engineering fields, different research groups demonstrate how the methods can be applied to such areas as: multicast routing, multisite mapping in grid environments, antenna arrays, analog electric circuit sizing, electricity markets, stochastic tracking in video sequences, and color quantization. Contains a systematic and comprehensive overview of differential evolution Reviews the latest differential evolution research Describes a comprehensive parametric study conducted over a large test bed Shows how methods can be practically applied to mobile communications grid computing circuits image processing power engineering Sample applications demonstrated by research groups in the United Kingdom, Australia, Italy, Turkey, China, and Eastern Europe Provides access to companion website with code examples for download Differential Evolution is ideal for application engineers, who can use the methods described to solve specific engineering problems. It is also a valuable reference for post-graduates and researchers working in evolutionary computation, design optimization and artificial intelligence. Researchers in the optimization field or engineers and managers involved in operations research will also find the book a helpful introduction to the topic.