Time and Tide: A Romance of the Moon
View of the Moon two days after first quarter.
From a photograph by Mr. Lewis M. Rutherford.
Frontispiece.
PREFACE
Having been honoured once again with a request that I should lecture before the London Institution, I chose for my subject the Theory of Tidal Evolution. The kind reception which these lectures received has led to their publication in the present volume. I have taken the opportunity to supplement the lectures as actually delivered by the insertion of some additional matter. I am indebted to my friends Mr. Close and Mr. Rambaut for their kindness in reading the proofs.
Observatory, Co. Dublin,
April 26, 1889.
LECTURE I
It is my privilege to address you this afternoon on a subject in which science and poetry are blended in a happy conjunction. If there be a peculiar fascination about the earlier chapters of any branch of history, how great must be the interest which attaches to that most primeval of all terrestrial histories which relates to the actual beginnings of this globe on which we stand.
In our efforts to grope into the dim recesses of this awful past, we want the aid of some steadfast light which shall illumine the dark places without the treachery of the will-o'-the-wisp. In the absence of that steadfast light, vague conjectures as to the beginning of things could never be entitled to any more respect than was due to mere matters of speculation.
Of late, however, the required light has been to some considerable extent forthcoming, and the attempt has been made, with no little success, to elucidate a most interesting and wonderful chapter of an exceedingly remote history. To chronicle this history is the object of the present lectures before this Institution.
First, let us be fully aware of the extraordinary remoteness of that period of which our history treats. To attempt to define that period chronologically would be utterly futile. When we have stated that it is more ancient than almost any other period which we can discuss, we have expressed all that we are really entitled to say. Yet this conveys not a little. It directs us to look back through all the ages of modern human history, through the great days of ancient Greece and Rome, back through the times when Egypt and Assyria were names of renown, through the days when Nineveh and Babylon were mighty and populous cities in the zenith of their glory. Back earlier still to those more ancient nations of which we know hardly anything, and still earlier to the prehistoric man, of whom we know less; back, finally, to the days when man first trod on this planet, untold ages ago. Here is indeed a portentous retrospect from most points of view, but it is only the commencement of that which our subject suggests.
For man is but the final product of the long anterior ages during which the development of life seems to have undergone an exceedingly gradual elevation. Our retrospect now takes its way along the vistas opened up by the geologists. We look through the protracted tertiary ages, when mighty animals, now generally extinct, roamed over the continents. Back still earlier through those wondrous secondary periods, where swamps or oceans often covered what is now dry land, and where mighty reptiles of uncouth forms stalked and crawled and swam through the old world and the new. Back still earlier through those vitally significant ages when the sunbeams were being garnered and laid aside for man's use in the great forests, which were afterwards preserved by being transformed into seams of coal. Back still earlier through endless thousands of years, when lustrous fishes abounded in the oceans; back again to those periods characterized by the lower types of life; and still earlier to that incredibly remote epoch when life itself began to dawn on our awakening globe. Even here the epoch of our present history can hardly be said to have been reached. We have to look through a long succession of ages still antecedent. The geologist, who has hitherto guided our view, cannot render us much further assistance; but the physicist is at hand—he teaches us that the warm globe on which life is beginning has passed in its previous stages through every phase of warmth, of fervour, of glowing heat, of incandescence, and of actual fusion; and thus at last our retrospect reaches to that particular period of our earth's past history which is specially illustrated by the modern doctrine of Time and Tide.
The present is the clue to the past. It is the steady application of this principle which has led to such epoch-making labours as those by which Lyell disclosed the origin of the earth's crust, Darwin the origin of species, Max Müller the origin of language. In our present subject the course is equally clear. Study exactly what is going on at present, and then have the courage to apply consistently and rigorously what we have learned from the present to the interpretation of the past.
Thus we begin with the ripple of the tide on the sea-beach which we see to-day. The ebb and the flow of the tide are the present manifestations of an agent which has been constantly at work. Let that present teach us what tides must have done in the indefinite past.
It has been known from the very earliest times that the moon and the tides were connected together—connected, I say, for a great advance had to be made in human knowledge before it would have been possible to understand the true relation between the tides and the moon. Indeed, that relation is so far from being of an obvious character, that I think I have read of a race who felt some doubt as to whether the moon was the cause of the tides, or the tides the cause of the moon. I should, however, say that the moon is not the sole agent engaged in producing this periodic movement of our waters. The sun also arouses a tide, but the solar tide is so small in comparison with that produced by the moon, that for our present purpose we may leave it out of consideration. We must, however, refer to the solar tide at a later period of our discourses, for it will be found to have played a very splendid part at the initial stage of the Earth-Moon History, while in the remote future it will again rise into prominence.
It will be well to set forth a few preliminary figures which shall explain how it comes to pass that the efficiency of the sun as a tide-producing agent is so greatly inferior to that of the moon. Indeed, considering that the sun has a mass so stupendous, that it controls the entire planetary system, how is it that a body so insignificant as the moon can raise a bigger tide on the ocean than can the sun, of which the mass is 26,000,000 times as great as that of our satellite?
This apparent paradox will disappear when we enunciate the law according to which the efficiency of a tide-producing agent is to be estimated. This law is somewhat different from the familiar form in which the law of gravitation is expressed. The gravitation between two distant masses is to be measured by multiplying these masses together, and dividing the product by the square of the distance. The law for expressing the efficiency of a tide-producing agent varies not according to the inverse square, but according to the inverse cube of the distance. This difference in the expression of the law will suffice to account for the superiority of the moon as a tide-producer over the sun. The moon's distance on an average is about one 386th part of that of the sun, and thus it is easy to show that so far as the mere attraction of gravitation is concerned, the efficiency of the sun's force on the earth is about one hundred and seventy-five times as great as the force with which the moon attracts the earth. That is of course calculated under the law of the inverse square. To determine the tidal efficiency we have to divide this by three hundred and eighty-six, and thus we see that the tidal efficiency of the sun is less than half that of the moon.
When the solar tide and the lunar tide are acting in unison, they conspire to produce very high tides and very low tides, or, as we call them, spring tides. On the other hand, when the sun is so placed as to give us a low tide while the moon is producing a high tide, the net result that we actually experience is merely the excess of the lunar tide over the solar tide; these are what we call neap tides. In fact, by very careful and long-continued observations of the rise and fall of the tides at a particular port, it becomes possible to determine with accuracy the relative ranges of spring tides and neap tides; and as the spring tides are produced by moon plus sun, while the neap tides are produced by moon minus sun, we obtain a means of actually weighing the relative