Logic: Deductive and Inductive
PREFACE
In this edition of my Logic, the text has been revised throughout, several passages have been rewritten, and some sections added. The chief alterations and additions occur in cc. i., v., ix., xiii., xvi., xvii., xx.
The work may be considered, on the whole, as attached to the school of Mill; to whose System of Logic, and to Bain's Logic, it is deeply indebted. Amongst the works of living writers, the Empirical Logic of Dr. Venn and the Formal Logic of Dr. Keynes have given me most assistance. To some others acknowledgments have been made as occasion arose.
For the further study of contemporary opinion, accessible in English, one may turn to such works as Mr. Bradley's Principles of Logic, Dr. Bosanquet's Logic; or the Morphology of Knowledge, Prof. Hobhouse's Theory of Knowledge, Jevon's Principles of Science, and Sigwart's Logic. Ueberweg's Logic, and History of Logical Doctrine is invaluable for the history of our subject. The attitude toward Logic of the Pragmatists or Humanists may best be studied in Dr. Schiller's Formal Logic, and in Mr. Alfred Sidgwick's Process of Argument and recent Elementary Logic. The second part of this last work, on the "Risks of Reasoning," gives an admirably succinct account of their position. I agree with the Humanists that, in all argument, the important thing to attend to is the meaning, and that the most serious difficulties of reasoning occur in dealing with the matter reasoned about; but I find that a pure science of relation has a necessary place in the system of knowledge, and that the formulæ known as laws of contradiction, syllogism and causation are useful guides in the framing and testing of arguments and experiments concerning matters of fact. Incisive criticism of traditionary doctrines, with some remarkable reconstructions, may be read in Dr. Mercier's New Logic.
In preparing successive editions of this book, I have profited by the comments of my friends: Mr. Thomas Whittaker, Prof. Claude Thompson, Dr. Armitage Smith, Mr. Alfred Sidgwick, Dr. Schiller, Prof. Spearman, and Prof. Sully, have made important suggestions; and I might have profited more by them, if the frame of my book, or my principles, had been more elastic.
As to the present edition, useful criticisms have been received from Mr. S.C. Dutt, of Cotton College, Assam, and from Prof. M.A. Roy, of Midnapore; and, especially, I must heartily thank my colleague, Dr. Wolf, for communications that have left their impress upon nearly every chapter.
London,
August, 1914
CHAPTER I
INTRODUCTORY
§ 1. Logic is the science that explains what conditions must be fulfilled in order that a proposition may be proved, if it admits of proof. Not, indeed, every such proposition; for as to those that declare the equality or inequality of numbers or other magnitudes, to explain the conditions of their proof belongs to Mathematics: they are said to be quantitative. But as to all other propositions, called qualitative, like most of those that we meet with in conversation, in literature, in politics, and even in sciences so far as they are not treated mathematically (say, Botany and Psychology); propositions that merely tell us that something happens (as that salt dissolves in water), or that something has a certain property (as that ice is cold): as to these, it belongs to Logic to show how we may judge whether they are true, or false, or doubtful. When propositions are expressed with the universality and definiteness that belong to scientific statements, they are called laws; and laws, so far as they are not laws of quantity, are tested by the principles of Logic, if they at all admit of proof.
But it is plain that the process of proving cannot go on for ever; something must be taken for granted; and this is usually considered to be the case (1) with particular facts that can only be perceived and observed, and (2) with those highest laws that are called 'axioms' or 'first principles,' of which we can only say that we know of no exceptions to them, that we cannot help believing them, and that they are indispensable to science and to consistent thought. Logic, then, may be briefly defined as the science of proof with respect to qualitative laws and propositions, except those that are axiomatic.
§ 2. Proof may be of different degrees or stages of completeness. Absolute proof would require that a proposition should be shown to agree with all experience and with the systematic explanation of experience, to be a necessary part of an all-embracing and self-consistent philosophy or theory of the universe; but as no one hitherto has been able to frame such a philosophy, we must at present put up with something less than absolute proof. Logic, assuming certain principles to be true of experience, or at least to be conditions of consistent discourse, distinguishes the kinds of propositions that can be shown to agree with these principles, and explains by what means the agreement can best be exhibited. Such principles are those of Contradiction (chap. vi.), the Syllogism (chap. ix.), Causation (chap. xiv.), and Probabilities (chap. xx.). To bring a proposition or an argument under them, or to show that it agrees with them, is logical proof.
The extent to which proof is requisite, again, depends upon the present purpose: if our aim be general truth for its own sake, a systematic investigation is necessary; but if our object be merely to remove some occasional doubt that has occurred to ourselves or to others, it may be enough to appeal to any evidence that is admitted or not questioned. Thus, if a man doubts that some acids are compounds of oxygen, but grants that some compounds of oxygen are acids, he may agree to the former proposition when you point out that it has the same meaning as the latter, differing from it only in the order of the words. This is called proof by immediate inference.
Again, suppose that a man holds in his hand a piece of yellow metal, which he asserts to be copper, and that we doubt this, perhaps suggesting that it is really gold. Then he may propose to dip it in vinegar; whilst we agree that, if it then turns green, it is copper and not gold. On trying this experiment the metal does turn green; so that we may put his argument in this way:—
Whatever yellow metal turns green in vinegar is copper;
This yellow metal turns green in vinegar;
Therefore, this yellow metal is copper.
Such an argument is called proof by mediate inference; because one cannot see directly that the yellow metal is copper; but it is admitted that any yellow metal is copper that turns green in vinegar, and we are shown that this yellow metal has that property.
Now, however, it may occur to us, that the liquid in which the metal was dipped was not vinegar, or not pure vinegar, and that the greenness was due to the impurity. Our friend must thereupon show by some means that the vinegar was pure; and then his argument will be that, since nothing but the vinegar came in contact with the metal, the greenness was due to the vinegar; or, in other words, that contact with that vinegar was the cause of the metal turning green.
Still, on second thoughts, we may suspect that we had formerly conceded too much; we may reflect that, although it had often been shown that copper turned green in vinegar, whilst gold did not, yet the same might not always happen. May it not be, we might ask, that just at this moment, and perhaps always for the future gold turns, and will turn green in vinegar, whilst copper does not and never will again? He will probably reply that this is to doubt the uniformity of causation: he may hope that we are not serious: he may point out to us that in every action of our life we take such uniformity for granted. But he will be obliged to admit that, whatever he may say to induce us to assent to the principle of Nature's uniformity, his arguments will not amount to logical proof, because every argument in some way assumes that principle. He has come, in fact, to the limits of Logic. Just as Euclid does not try to prove that 'two magnitudes equal to the same third are equal to one another,' so the Logician (as such) does not attempt to prove the uniformity of causation and the other principles of his science.
Even when our purpose is to ascertain some general truth, the results of systematic inquiry may have various degrees of certainty. If Logic were confined to strict demonstration, it would