Практикум по нейропакетам. (Бакалавриат). Монография - Александр Аполлонович Кириченко
Автор: | Александр Аполлонович Кириченко |
Издательство: | КноРус |
Серия: | |
Жанр произведения: | Техническая литература |
Год издания: | 2021 |
isbn: | 9785436573076 |
В настоящее время усиливается интерес к использованию искусственных нейронных сетей при получении новых знаний. Теория познания считает для этого типовой такую последовательность действий: созерцание – накопление – кластеризация – классификация – узнавание – предсказание – прогнозирование. Для решения этих задач существуют специальные программные средства. При изучении дисциплины «Нейросетевые технологии» один из её разделов называется «Нейропакеты», которые являются программными средствами для проведения нейросетевых исследований. Наибольшее распространение в нейропакетах получили программные реализации таких нейросетей, как перцептроны и сети Кохонена. С каждым годом появляются новые программные реализации нейросетей – сети RBF, Хопфилда, Хэмминга, свёрточные, рекуррентные, рекурсивные. Изменяются и методы использования нейросетей: глубокое обучение, свёртка, преобразование накапливаемых при обучении нейросетей знаний в правила продукций. Меняются и цели, с которыми проводятся нейросетевые исследования: смысловой поиск информации, анализ тематической структуры текстов, рисунков, музыкальных произведений и т.д. В этой книге речь пойдёт только о трёх некоммерческих программных средствах, два из которых относятся к группе нейропакетов. Раньше считалось, что основной и единственной особенностью нейросетей является «обучение на примерах». Для знакомства с этой особенностью служит приводимая студенческая нейросеть. Нейропакет Deductor Academic даёт возможность увидеть в работе перцептроны и сети Кохонена. Пакет MemBrain расширяет возможности нейропакетов и позволяет решать задачи на основе не только перцептронов и сетей Кохонена, но и использования рекуррентных и рекурсивных искусственных нейронных сетей. Книга предназначена для студентов и полезна всем специалистам, выполняющим нейросетевые исследования. Ключевые слова: нейросетевые исследования, автоматическая классификация, распознавание образов, кластеризация, перцептрон, рекуррентная нейросеть, рекурсия.